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Abstract

In this paper we focus on estimating the deformations that may exist between similar
images in the presence of additive noise when a reference template is unknown. The
deformations are modeled as parameters lying in a finite dimensional compact Lie group. A
general matching criterion based on the Fourier transform and its well known shift property
on compact Lie groups is introduced. M-estimation and semiparametric theory are then
used to study the consistency and asymptotic normality of the resulting estimators. As Lie
groups are typically nonlinear spaces, our tools rely on statistical estimation for parameters
lying in a manifold and take into account the geometrical aspects of the problem. Some
simulations are used to illustrate the usefulness of our approach and applications to various
areas in image processing are discussed.
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1 Introduction

In order to extract any information from a set of images, it is common sense that one has to
be able to compare the images one together. However, such a comparison is a difficult task
due to the lack of convexity of the space of images, and even giving a sense to the notion
of a mean image is not an easy matter. Hence, one of the most commonly used model is to
consider that the data are obtained through the deformation of the same image often called
template or reference image. In Grenander’s theory of shapes [16], images are considered as
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points in an infinite dimensional manifold and the variations of the images are modeled by
the action of Lie groups on the manifold. Finite dimensional Lie groups can be used to model
rigid displacement such as translation or rotation, while infinite dimensional groups such as
spaces of diffeomorphisms can model local and non-rigid deformations of an image and thus
provide much more flexibility than finite dimensional groups. In the last decade, there has been
a growing interest in transformation Lie groups to model the variability of natural images, and
the study of the properties and intrinsic geometries of such deformation groups is now an
active field of research (see e.g. [4], [27], [31] , [39] and references therein).

An important problem in this setting is the estimation of the mean pattern, achieved
through the estimation of the deformations between similar images in the presence of additive
noise when a reference template is unknown. This is the so-called registration or warping
problem of images (see [15] and the discussion therein for a detailed overview of image
registration in a statistical setting). The main goal of this paper is to build such estimates
and study their statistical properties when the deformation parameters are modeled by finite
dimensional Lie groups. Statistical estimation of parameters lying in a smooth Riemannian
manifold has been originally studied by [1]. A general overview and extensive references
on the geometrical aspect of statistical inference on manifold can be found in [23]. The
difficulty of statistical analysis on manifolds comes from the fact that the parameter space is
generally not linear which makes the definition of simple notions such as mean or covariance
a difficult task. Yet, various statistical problems in this context have been studied such as mean
estimation from a sample of random variables on a manifold [6], [8], nonparametric estimation
of location and dispersion parameters in a Riemannian manifold [5] or statistical estimation
and nonparametric inference in group models for manifold valued variables [24], [25], [26],
[11]. However, to the best of our knowledge, the literature on statistical estimation on Lie
groups for warping problems is scarce.

Consider the following general model for the registration of images: let X be a subset of Rd

(with d = 2, 3 in our applications) and G be a connected Lie group acting on X . For x ∈ X and
h ∈ G, the action of h onto x will de denoted by hx. To model a set of J images (with J > 1), let
us consider the following general deformation white noise model

dYj(x) = f j(x)dx + ǫdWj(x) for x ∈ X , j = 1 . . . J (1.1)

where
f j(x) = f ∗(hj

∗−1x).

The function f ∗ : X → R is the unknown common shape of the observed images Yj.
The h∗j ∈ G, j = 1, . . . , J are the unknown deformation parameters that we wish to

estimate, Wj, j = 1, . . . , J are independent standard Brownian sheets on the topological space
X with reference measure dx, and ǫ is an unknown noise level parameter. Note that the
white noise model (1.1) is a continuous model which is a very useful tool for the theoretical
study of statistical problem in image analysis. In practice, images are typically discretely
sampled on a regular grid, and thus the model (1.1) may seem inappropriate at a first glance.
However, asymptotic results obtained in the white noise model can be shown to lead to
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comparable asymptotic theory in a sampled data model provided the regression function
satisfies appropriate smoothness conditions, see [3] for further details. Moreover a continuous
model avoids the problem of controlling the bias introduced by any discretization scheme, and
allows one to rather focus on the statistical properties of the estimators.

A typical example of the above model is the registration of translated two-dimensional (2D)
images for which X = [0, 1]2, G = R2/Z2 (the torus in dimension two), and which founds its
applications in biomedical imaging or satellite remote sensing (see [28], [15]). Another example
is a rotation model for spherical images for which X = S2 (the unit sphere in dimension 3), and
G = SO(3) (the special orthogonal group). Indeed in many applications, data can be organized
as functions defined on a sphere. For instance, spherical images are widely used in robotics
since the sphere is a domain where perspective projection can be mapped, and an important
question is the estimation of the camera rotation from such images (see e.g. [30]). A Bayesian
approach in such model has been proposed also in [17] for automated target recognition of a
deformable template under the action of rotations and translations in dimension 3.

Within the model (1.1), the problem of optimal recovery of the shift parameters h∗j involves
semiparametric techniques. Indeed, semiparametric modeling is concerned with statistical
problems where the parameters of interest are both finite and infinite-dimensional. Here,
the finite-dimensional parameters are the Lie group elements, and the infinite-dimensional
parameter is the unknown template which is typically a 2D or 3D image (see [35] for a detail
presentation of semiparametric statistics), which blurs the parametric estimation issue. The
main idea in semiparametric statistics is to find an efficient tool which separates the effect of
the parameters from the influence of the blurring infinite-dimensional parameter.

A matching criterion has been proposed in [14], [43] for the mere problem of recovering
shifts between noisy one-dimensional curves observed on an interval i.e. when the model (1.1)
can be written as

dYj(x) = f ∗(x − h∗j )dx + ǫdWj(x) for x ∈ [0, 1] and hj ∈ [0, 1], j = 1, . . . , J. (1.2)

This criterion is based on the Fourier transform of the data and on its well-known shift property
for one-dimensional translations. Indeed, let eℓ(x) = e−i2πℓx, ℓ ∈ Z denotes the standard
Fourier basis. Then by taking the Fourier coefficients dj,ℓ =

∫

[0,1] eℓ(x)dYj(x) of the observed
curves the model (1.2) becomes

dj,ℓ = e−i2πℓh∗j cℓ + ǫzj,ℓ, with cℓ =
∫

[0,1]
f ∗(x)eℓ(x)dx and zj,ℓ ∼i.i.d. N(0, 1).

Hence, for a set of parameters (h1, . . . , hJ) ∈ [0, 1]J , the following contrast function is defined
in [14], [43]

M(h1, . . . , hJ) = ∑
|ℓ|≤ℓǫ

J

∑
j=1

∣

∣

∣

∣

∣

ei2πℓhj dj,ℓ −
1
J

J

∑
j′=1

ei2πℓhj′ dj′ ,ℓ

∣

∣

∣

∣

∣

2

(1.3)

where ℓǫ is a frequency cut-off parameter. Under appropriate conditions, minimization of M

over [0, 1]J is shown to yield consistent estimators. Note that the above criterion is closely
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related to Procrustean analysis which is classically used for the statistical analysis of shapes
(see e.g. [29]) and the registration of a set of curves onto a common target function.

In this paper, we extend this approach to a multi-dimensional setting and to the general
case where the shift parameters belong to a compact Lie group. First, as Lie groups are typically
not linear spaces, an important question is the development of information geometry tools to
extend classical notions, such as asymptotic normality and efficiency, or the Cramer-Rao bound
originally proposed for parameters lying in an Euclidean space. In the context of parametric
statistics, several generalizations of these concepts to arbitrary manifolds have been proposed
[18], [19], and we refer to [37] for a detailed discussion and review. However, in the more
general situation of semiparametric models, there is few work dealing with the estimation of
parameters lying in a Lie group. Then, in order to use the same kind of matching criterion, we
need to use the extension of the the standard one-dimensional Fourier transform to functions
defined on a compact Lie group. It is achieved via the theory of representations (see e.g. [36]).
Thanks to a general shift property of the Fourier transform on arbitrary compact Lie group,
a similar matching criterion based on the Fourier transform of the data can still be defined,
and enables to investigate the statistical properties of the resulting estimators. Note that M-
estimation for parameters in groups models has been considered in [11], but applying M-
estimation theory in the context of image warping to compact Lie groups has not been proposed
before.

The main contributions of this paper are the following: we provide a general framework
for the registration problem of noisy images without a reference template. We build a general
matching criterion for recovering the deformations that may exist between similar images,
and we also study consistency and asymptotic normality for parameters lying in a Lie group.
Although the model (1.1) looks as a toy model, our results already provides some insights into
the estimation of deformations over Lie group. In particular, an important and new result is the
study of the asymptotic covariance matrix of estimators belonging to non-commutative groups
within a semiparametric framework. Indeed, our results on the asymptotic normality of the
estimators show that there exists a significant difference between semiparametric estimation
on a linear Euclidean space and semi-parametric estimation on a nonlinear manifold. Finally,
our general matching criterion provides a feasible method to estimate the parameters h∗j , which
induces an estimator of the common shape f ∗ using the inversion theorem of the Fourier
Transform. Then, the convergence of this estimator of the common shape is also studied.

The rest of the paper is organized as follows. In Section 2, some properties on the Fourier
transform are briefly recalled, and a simple model for shifts on Lie groups is introduced. In
Section 3, the shift property of the Fourier transform is used to define a general matching
criterion on compact Lie groups, and the consistency of the estimator is established. The
problem of studying and defining a notion of asymptotic normality of estimators belonging to
a Lie group is studied in Section 4, which also includes a study of an estimator of the common
shape. The efficiency of the resulting estimators for the shifts is discussed in Section 5. A
general gradient descent algorithm, to minimize the matching criterion, is described in Section
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6 and some numerical simulations are presented to illustrate the usefulness of this approach.
Finally in Section 7 some extensions of our simple shift model are described and applied to the
problem of registering spherical images. The main proofs are gathered in a technical Appendix.

2 A shift model on Lie groups

2.1 The Fourier transform on compact Lie groups

In what follows, some aspects of the theory of the Fourier transform on compact Lie groups
are briefly summarized. For more details, we refer to the books of [9], [12] and [36]. Let G be a
compact Lie group. Denote by e the identity element, and by hg the binary operation between
two elements h, g ∈ G. Let L2(G) be the Hilbert space of complex valued, square integrable
functions on the group G with respect to the Haar measure dg.

To define a Fourier transform on L2(G), a fundamental tool is the theory of group
representations, which aims at studying the properties of groups via their representations as
linear transformation of vector spaces. More precisely, a representation is an homomorphism
from the group to the automorphism group of a vector space. So let V be a finite-dimensional
vector space, we defined a representation of G in V as a continuous homomorphism π : G →
GL(V), where GL(V) denotes the set of automorphisms of V. Hence it provides a linear
transformation which depends on the vector space on which the group acts.

A representation π on V is irreducible if the only invariant subspaces by the set of
homomorphism π(g), g ∈ G, are {0} and V. Every irreducible representation π of a compact
group G in a vector space V is finite dimensional, so we denote by dπ the dimension of V. By
choosing a basis for V, it is often convenient to identify π(g) with a matrix of size dπ × dπ

with complex entries. Two representations will be call equivalent if they are the same up to,
basically a change of basis. Denote the set of equivalence classes of irreducible representations
of G by Ĝ. For simplicity, the same notation is used for π and its equivalence class in Ĝ.

The function g 7→ Tr π(g) is called the character of π, and the fundamental theorem of Schur

orthogonality states that the characters form an orthonormal system in L2(G) when π ranges
over the dual set Ĝ. In the case of compact groups, the dual Ĝ is a countable set, and the Peter-

Weyl Theorem states that the characters are dense in L2(G). Indeed, if π is a finite dimensional
representation of G in the vector space V, then one can define, for every f ∗ ∈ L2(G), the linear
mapping π( f ∗) : V → V by

π( f ∗)v =
∫

G
f ∗(g)π(g)

T
vdg, for v ∈ V.

The matrix π( f ∗) is the generalization to the case of compact group of the usual notion of
Fourier coefficient. Then, Peter-Weyl Theorem implies that

f ∗(g) = ∑
π∈Ĝ

dπTr (π(g)π( f ∗)) and ‖ f ∗‖2
L2(G) = ∑

π∈Ĝ

dπTr
(

π( f ∗)π( f ∗)
T
)

(2.1)

In the sequel, we will also denote by 〈A, B〉HS = Tr (A
T

B) the Hilbert-Schmidt inner product
between two finite dimensional dπ × dπ matrices A and B. Note that if G equals the circle
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R/Z, then Ĝ = Z, the representation are the trigonometric polynomials, the “matrices” π( f ∗)
are one-dimensional and equal the standard Fourier coefficients, and one finally retrieves the
classical Fourier decomposition of a periodic function in L2[0, 1].

2.2 A simple shift model

To focus on the geometrical aspects of the statistical procedure and to simplify the presentation,
the simplest model for which X = G is studied to give the main ideas of our approach. A
discussion in the case where X 6= G is deferred to Section 7 to show that the methodology can
be extended to more complex situations. In this case the general model (2.2) becomes

dYj(g) = f j(g)dg + ǫdWj(g), j = 1 . . . J (2.2)

where f j(g) = f ∗(h∗j
−1g), and Wj are independent standard Brownian sheets on the Lie group

G. Surveys on the constructions of Brownian motions indexed by a Lie group can be found in
[21], [13], [2] and references therein. Obviously, without any further restriction on the set of
possible shifts, the model (2.2) is not identifiable. Indeed, if s is an element of G with s 6= e,
then one can replace the h∗j ’s in equation (2.2) by h̃j = h∗j s and f ∗ by f̃ (g) = f ∗(sg) without
changing the formulation of the model.

Let A denote the space G J . To ensure identification, we further assume that the set of
parameters A is reduced to the subset A0 ⊂ A such that

A0 = {(h1, . . . , hJ) ∈ A, h1 = e}. (2.3)

The above assumption will also guarantee the convergence of our estimators (see Theorem 3.1).

Since π(g)
T

= π(g−1), one has that for all j = 1, . . . , J

π( f j) =
∫

G
f ∗(h∗j

−1g)π(g−1)dg =
∫

G
f ∗(g)π((h∗j g)−1)dg = π( f ∗)π(h∗j

−1).

The above formula is classically referred to as the shift property of the Fourier transform. Indeed,
it is well known that for the standard Fourier transform on R, then shifting a function only
amounts to a phase correction of its Fourier coefficients. This property is at the heart of our
estimation procedure to exhibit the shift parameters h∗j .

2.3 Regularity assumption on the common shape

Since we use the Fourier transform to build our estimation method, it will be natural to suppose
that the common shape f ∗ satisfy the following assumption:

f ∗ ∈ L
2(G) ⊂ L

1(G),

where L1(G) denotes the set of integrable function on G with respect to dg.
Now remark that the function f ∗ should satisfy some geometric conditions to make the

estimation of the shift parameters feasible. Indeed, think of a spherical image that would
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be symmetric with respect to some axis through the origin. Such an image is thus rotation
invariant and a proper estimation of the shifts is therefore impossible. Now, let us study the
general case. Assume that there exists a closed subgroup H of G (not reduced to e) such that
f ∗(gh) = f ∗(g) for all g ∈ G and h ∈ H. Then, there is a unique manifold structure on
the quotient group K = G/H so that the projection map PH : G → K is smooth. Let π be
an irreducible representation of K on the vector space V. Then, π can be used to define an
irreducible representation of G by π ◦ PH. Furthermore, from the Parseval formula (2.1) we
have that:

‖ f ∗‖2
L2(G) = ∑

π∈Ĝ

dπTr
(

π( f ∗)π( f ∗)
T
)

= ∑
π∈K̂

dπTr
(

π( f ∗)π( f ∗)
T
)

.

For any two (generic) sets A and B, the set A \ B denotes the set A minus B. Then we deduce
that for all irreducible representation π ∈ Ĝ \ K̂ the linear mapping π( f ∗) : V → V is
identically null and thus the shift property of the Fourier transform can not be used to recover
the shifts for such π’s, and of course the set Ĝ \ K̂ is clearly unknown in practice. Thus, the
following definition is introduced.

Definition 2.1 A function f ∗ ∈ L2(G) is said to be not shift-invariant if there does not exist a closed

subgroup H (except H = {e} or H = G) such that f ∗(gh) = f ∗(g) for all g ∈ G and h ∈ H.

Finally, we also impose some smoothness assumptions on the function to recover f ∗ which
are given by the following definition. This assumption is used to guarantee the unicity of the
minimum of the M-criterion defined in the next section.

Definition 2.2 A function f ∗ ∈ L2(G) is said to be regular if for all π ∈ Ĝ such that π( f ∗) is not

identically null, then π( f ∗) is invertible.

3 The M-estimation criterion

3.1 A matching criterion based on the Fourier transform

For h = (h1,. . ., hJ) ∈ A0, we propose to minimize the following criterion inspired by recent
results of [14] and [43] for the estimation of shifts between curves:

M(h1, . . . , hJ) =
1
J

J

∑
j=1

∥

∥

∥

∥

∥

f j ◦ Lhj
− 1

J

J

∑
j′=1

f j′ ◦ Lhj′

∥

∥

∥

∥

∥

2

L2(G)

, (3.1)

where Lh : g ∈ G → hg ∈ G and f j : g ∈ G → f ∗(h∗−1
j g) ∈ R. Using the Parseval-Plancherel

formula, the criterion may be rewritten in the Fourier domain as:

M(h) = M(h1, . . . , hJ) =
1
J

J

∑
j=1

∑
[π]∈Ĝ

dπ

∥

∥

∥

∥

∥

π( f j)π(hj) −
1
J

J

∑
j′=1

π( f j′)π(hj′ )

∥

∥

∥

∥

∥

2

HS

, (3.2)

for h = (h1, . . . , hJ) ∈ A0. Given that π( f j) = π( f ∗)π(h∗j
−1), the criterion M has a minimum

at h∗ = (h∗1 , . . . , h∗J ) such that M(h∗) = 0. If f ∗ is assumed to be not shift-invariant and regular
(see Definitions 2.1 and 2.2), then this minimum is unique (see the proof of Theorem 3.1).
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3.2 The empirical criterion

Our estimation method is then based on the Fourier Transform of the noisy data given by
model (2.2). Let π an irreducible representation of G into V. We consider the following linear
mappings from V to V which are defined from the model (2.2):

π(Yj) =
∫

G
π(g−1)dYj(g) = π( f j) + ǫπ(Wj), j = 1 . . . J,

where
π(Wj) =

∫

G
π(g−1)dWj(g), j = 1 . . . J.

Let us denote by (πkl(Wj)) the matrix coefficients of π(Wj) :

πkl(Wj) =
∫

G
πkl(g−1)dWj(g).

Using the Schur orthogonality and the fact that Wj is a standard Brownian sheet on G, one
obtains that the complex variables πkl(Wj) are independent identically distributed Gaussian
variables NC(0, d−1

π ). Notice that if π is an irreducible representation, then the conjugate
representation π : g ∈ G → π(g) is irreducible too.

Let Ĝǫ be a finite subset of Ĝ such that the sequence Ĝǫ increases when ǫ tends to 0 and

∪ǫ>0Ĝǫ = Ĝ.

Moreover, we assume that if π ∈ Ĝǫ, then π ∈ Ĝǫ. Practical choices for the set Ĝǫ will be
discussed later on in the paper for the case of Abelian groups and the non-commutative group
SO(3). Then, we consider the following criterion:

Mǫ(h1, . . . , hJ) =
1
J

J

∑
j=1

∑
π∈Ĝǫ

dπ

∥

∥

∥

∥

∥

π(Yj)π(hj) −
1
J

J

∑
j′=1

π(Yj′)π(hj′),

∥

∥

∥

∥

∥

2

HS

(3.3)

and the M-estimator given by
ĥǫ = arg min

h∈A0

Mǫ(h).

The following theorem provides the consistency of ĥǫ. Note that a Lie group is a topological
space which can be equipped with a metric, and thus the convergence in probability of ĥǫ is
defined with respect to this metric.

Theorem 3.1 Assume that f ∗ is not shift-invariant and regular. Moreover suppose that

lim
ǫ→0

ǫ2 ∑
π∈Ĝǫ

d2
π = 0

then ĥǫ converges in probability to h∗ = (h∗1 , . . . , h∗J ).

The condition that limǫ→0 ǫ2 ∑π∈Ĝǫ
d2

π = 0 in Theorem 3.1 restricts the choice of the subset
Ĝǫ. Such a condition leads to the choice of a subset Ĝǫ with a small number of irreducible
representations of low dimensions dπ . Some examples in the case of an Abelian group and for
G = SO(3) are given in the next section.
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4 Asymptotic normality of the estimator

By their nature, groups are usually nonlinear objects. Thus, it is not obvious to define a notion
of asymptotic normality for an M-estimator such as ĥǫ which takes its values in a group. Indeed
asymptotic normality of M-estimators is classically derived using the differentiability over a
vector space of the criterion to minimize. To overcome this, we assume that G is a Lie group.
Then, a way to linearize a Lie group is to look at its Lie algebra via the exponential map. The
Lie algebra is the vector space of left invariant vectors fields equipped with the Lie bracket of
vector fields. The exponential map is a bridge between the structure of a Lie group and the
structure of its Lie algebra which is a vector space. At the neighborhood of some point g ∈ G, a
Lie group is very similar to its tangent space at g which is a vector space that can be identified to
the Lie algebra of G. In this setting, the asymptotic normality of an estimator can be established
by examining the behavior of the estimator in the immediate neighborhood of the parameter h∗

to estimate. Thus, all we need is to define an appropriate system of coordinates to parametrize
the group G in the vicinity of the point h∗. Such an approach has been proposed for instance
in [7] to study the asymptotic properties of the intrinsic mean of a sample of random variables
taking their values in a manifold. In the next sections, we provide some background on Lie
groups and fix the notations. Then, we study the asymptotic normality of the estimator ĥǫ.

4.1 Lie group, Lie algebra and the exponential map

Let us first introduce some definitions. A Lie group (G, ·) is a group which has also the structure
of a manifold such that the group product and the inversion are smooth mapping with respect
to the differential structure for the manifold. Let F be a smooth manifold of finite dimension.
For each point p ∈ F, recall that the tangent space TpF is the vector space of all point-derivations
of the algebra of smooth germs defined in the vicinity of p. The tangent bundle of F is the
disjoint union of all tangent space spaces of F,

TF =
⋃

p∈F

{p} × TpF.

The derivative of a function m : G → F at a point h in the direction v ∈ ThG will be written
as dhm(v) ∈ Tm(h)F and dhm : ThG → Tm(h)F is a linear map. Then, it defines a linear operator
dm : TG → TF, called the tangent map of m, such that:

∀(g, Xg) ∈ TG, dm(g, Xg) = dgm(Xg).

Then, consider the left multiplication which is defined for any h ∈ G as the mapping Lh : G →
G such that Lh(g) = hg. The left multiplication Lh is diffeomorphism. The derivative of Lh−1 at
point h is known to determine an isomorphism between TeG and ThG. Therefore any element
of ThG can be identified with an element of TeG via the relation TeG = dLh−1(h, ThG).

Now, recall that a vector field X on G is a smooth section of the tangent bundle TG

X : G → TG

g → (g, Xg),
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where Xg ∈ TgG for all g ∈ G. A vector field X is left invariant if dgLhXg = Xhg for all
(g, h) ∈ G × G, and let us denote by ΓL(G) the space of left invariant vector fields. Hence
a left invariant vector field X is completely determined by its value at the identity e since
Xg = deLgXe. Moreover one can associate to any u ∈ TeG, a left invariant vector field Xu

given by Xu
g = deLg(u), and one can check that the mapping

{

ψ : TeG → ΓL(G)

u 7→ Xu

is invertible by simply associating to any left-invariant vector field X ∈ ΓL(G) its value at
the identify e namely ψ−1(X) = Xe. Clearly ψ is an isomorphism and therefore, the tangent
space TeG of G at the identity e is in bijection with the space ΓL(G) which will be written as
TeG ≃ ΓL(G). Then, let us now define the Lie algebra of G:

Definition 4.1 The Lie algebra G of G is the tangent space at the identity e i.e. G = TeG ≃ ΓL(G).

The dimension of G as a Lie group will always be assumed to be finite. The Lie algebra
G is thus a vector space of finite dimension p ≥ 1. Since a Lie group is a topological space,
the notion of convergence is defined with respect to this topology. However, for studying
convergence results on G, it will be useful to equipped the Lie algebra with a Banach space
structure. We therefore suppose that there exists a norm ‖ · ‖ on G which induces a complete
metric. For a detailed presentation of compact Lie groups and Lie algebra we refer to [36] and
[40].

Each left invariant vector field X defines a differential equation governed by a flow denoted
by φX(t, g) ∈ G for all (t, g) ∈ R × G such that

{

∂
∂t φX(t, g) = XφX(t,g)

φX(0, g) = g

Since X is left invariant, one has that φX(t, g) = LgφX(t, e) and thus the flow is completely
determined by the initial condition φX(0, e) = e. Then, we arrive at the following definition:

Definition 4.2 The exponential map exp is the mapping from G ≃ ΓL(G) → G defined by exp(X) =

φX(1, e) for X ∈ ΓL(G).

Using that TeG ≃ ΓL(G), the exponential map can also be seen as a mapping from G = TeG to
G given by

exp(u) = φXu(1, e) for u ∈ G = TeG.

This application maps 0 ∈ G to the identity e ∈ G. Moreover, the exponential map can be
shown (see e.g. [40]) to be an analytical diffeomorphism from an open neighborhood V(0) of
0 ∈ G to a neighborhood V(e) = exp(V(0)) of e ∈ G. The differential du exp of exp at u ∈ G is
a linear function given by

{

du exp : G → Texp(u)G

v 7→ d
dt |t=0 exp(u + tv)

10



Moreover one can check that dexp(u)Lexp(−u) ◦ du exp is an endomorphism of G and by a slight
abuse of notations, dexp(u)Lexp(−u) ◦ du exp is also denoted by du exp. In what follows the
application du exp is thus considered as a map du exp : G → G.

Since the exponential map is an application from G to G it will play a fundamental role to
define the asymptotic normality of the estimator ĥǫ. Indeed, using that exp is a diffeomorphism
from V(0) to V(e), one has that if ĥǫ ∈ V(e), then there exists a unique ûǫ ∈ V(0) such that
ĥǫ = exp(ûǫ). Then, we finally arrive at the following definition:

Definition 4.3 The operation ĥǫ 7→ exp−1(ĥǫ) is defined as the projection of the estimator ĥǫ onto the

vector space G.

In Table 1, a few illustrative examples are given to better explain how the estimates are
mapped to the Lie Algebra in the case of the circle group G = (R/Z, +) of dimension p = 1,
the group of all invertible n × n matrices with real entries G = GL(n, R) of dimension p = n2,
and the special orthogonal group G = SO(n, R) of dimension p = (n2 − n)/2. One can see

The Lie group G The Lie Algebra The exponential map
(R/Z, +) R exp(u) = u mod 1, for u ∈ R

(GL(n, R), ·) M(n, R) exp(u) = ∑
+∞
k=0

uk

k! , for u ∈ M(n, R)

(SO(n, R), ·) S(n, R) exp(u) = ∑
+∞
k=0

uk

k! , for u ∈ S(n, R)

Table 1: Examples of Lie groups with their associated Lie algebra and exponential map,
where M(n, R) denotes the set of all n × n matrices with real entries and S(n, R) =
{

u ∈ M(n, R) such that uT + u = 0 and Tr(u) = 0
}

.

that, in the case of the circle group, then du exp(v) = v for all u, v ∈ R. In contrast, in the case
where G = GL(p, R), the differential of exp at u ∈ G = M(n, R) is (with our slight abuse of
notations for du exp),

du exp(v) = ∑
k≥0

(−1)k

(k + 1)!
(adu)

k (v) for v ∈ G, where

{

adu : G → G
v 7→ uv − vu.

(4.1)

and (adu)
k (v) is defined recursively by (adu)

k (v) = adu

(

(adu)
(k−1) (v)

)

and (adu)
0 (v) = v.

More generally, in the case of Abelian groups, the mapping du exp reduces to the identity
on G and is therefore independent of u, whereas in the case of non-commutative groups,
this differential depends on u. This will make a fundamental difference between Abelian
and non-commutative groups for the interpretation of the asymptotic covariance matrix of
h∗ = (h∗1 , . . . , h∗J ) in the model (2.2), see the following section for a precise definition.

4.2 Projection of the estimator

Our main idea is to re-express the criterion Mǫ defined on G J as a function M̃ǫ defined on G J

using the exponential map. If G is a compact group, then the exponential map is surjective (see
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[40]), which means that for any g ∈ G, there exists u ∈ G such that g = exp(u). However, this
map is not necessarily injective (think of the circle group for instance). To overcome this, we
will use the fact that the exponential chart exp : V(0) → V(e) is a diffeomorphism, where V(0)

is an open neighborhood of 0 ∈ G, and V(e) = exp(V(0)) is a neighborhood of e ∈ G.

Assumption 4.1 Let h̃ = (h̃1. . ., h̃J) be in A0 with h̃1 = e, such that the true parameters (h∗1 . . ., h∗J )
belong to the neighborhood of (h̃1, . . . , h̃J),

(h∗1 , . . . , h∗J ) ∈ V(h̃) = {(h1, . . . , hJ) ∈ A0, hj ∈ h̃jV(e)}.

Then we can re-express our criteria on the vicinity of h̃ as functions on the vector space G J ,

M̃(u1, . . . , uJ) = M(h̃1 exp(u1), . . . , h̃J exp(uJ)),

and
M̃ǫ(u1, . . . , uJ) = Mǫ(h̃1 exp(u1), . . . , h̃J exp(uJ)).

Both functions M̃ and M̃ǫ are thus defined on the vector space G J of dimension J × p. Using
the exponential chart, there exist u∗ = (u∗

1, . . . , u∗
J ) ∈ V(0)J such that h∗1 = h̃1 exp(u∗

1),
h∗2 = h̃2 exp(u∗

2), . . . , h∗J = h̃J exp(u∗
J ). Let U be a compact neighborhood of 0 ∈ G, with

U ⊂ V(0) and such that u∗ ∈ U J . Note that Assumption 4.1 imply that the true parameters
u∗ = (u∗

1, . . . , u∗
J ) belong to the compact set

U0 =
{

(u1, . . . , uJ) ∈ U J , u1 = 0
}

.

Note that under Assumption 4.1, it follows that h∗1 = e is fixed which corresponds to the
identifiability condition (2.3). Then, we define,

ûǫ = (û1, . . . , ûJ) = arg min
u∈U0

M̃ǫ(u1, . . . , uJ),

Arguing as in the proof of Theorem 3.1, we immediately have the following proposition:

Proposition 4.1 Suppose that Assumption 4.1 holds. Assume that f ∗ is not shift-invariant and regular.

Moreover, suppose that

lim
ǫ→0

ǫ2 ∑
π∈Ĝǫ

d2
π = 0

then ûǫ converges in probability to u∗ = (u∗
1, . . . , u∗

J ) as ǫ → 0.

As ûǫ belongs to a linear space, the problem of studying the asymptotic normality of ĥǫ

amounts to studying the asymptotic normality of ûǫ with the local exponential chart centered in
h̃. In the case where G is a non commutative group, we will see that the asymptotic covariance
matrix of ûǫ can be interpreted as a riemannian metric i.e. as an inner product on the tangent
space Th∗G J that depends on the point h∗ ∈ G J and the chosen coordinate chart (and thus on h̃).
This is the standard fact for statistical models indexed by parameters belonging to a manifold
and we will comment more on this in the next section, see e.g. [37] and the references therein.
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In practice, we recommend the choice h̃j = e for all j = 1, . . . , J which corresponds a local
parametrization of the group G around the identity e. Note that this local parametrization is
also used to calculate ĥǫ = arg minh∈A0 Mǫ(h) since once ûǫ has been computed then the choice
h̃j = e for all j = 1, . . . , J automatically yields an expression for the value of ĥǫ. Such an choice
is equivalent to suppose that the true parameter h∗ belong to V(e). Somehow, it restricts the
study of asymptotic normality to the choice of the chart at the origin. Being able to do the
estimation without assuming that the true parameter lies in the domain of a specific chart is
an interesting topic for future work. One possibility would be to use the estimator ĥǫ to define
a random chart depending on this point. However, we believe that studying the asymptotic
normality of the estimator on such a random chart is a difficult task that is beyond the scope of
the paper.

4.3 Asymptotic normality of ûǫ

Let us first introduce and recall some notations. Let F be a smooth manifold of finite dimension.
Recall that the derivative of a function m : G → F at a point h in the direction v ∈ ThG will
be written as dhm(v) ∈ Tm(h)F, dhm : ThG → Tm(h)F is a linear map. The second derivative
of a function m : G → F at a point h in the direction v ∈ ThG and w ∈ ThG will be written
as d2

hm(v, w) ∈ Tm(h)F, d2
hm : ThG × ThG → Tm(h)F is a bilinear map. By abusing notations,

dexp(u)Lexp(−u)(d2
u exp(v, w)) is denoted by d2

u exp(v, w) which is bilinear map from G ×G → G.
Finally, it will be convenient to express our results for a given basis of G J . Let e1, . . . , eJ

be the canonical basis of RJ , and let x1, . . . , xp be a basis of G. Then, G J can be viewed as the
tensor product space of RJ and G : G J = RJ ⊗ G. For example, let v be in G and j ∈ {1 . . . J},
ej ⊗ v is the element (0, . . . , 0, v, 0, . . . , 0) of G J where v is the jth coordinate. Then, a basis of
G J is (ej ⊗ xk)1≤j≤J,1≤k≤p. With a such basis, we can identify the differential of order 1 at point
u ∈ G J of a function m : G J → R as a element ∇um of RJd. Likewise, the differential of order 2
at point u ∈ G J of a function m : G J → R can be identified as as an element ∇2

um of the space of
Jd × Jd real matrices.

Note that the consistency of ǫ−1(ûǫ − u∗) should be actually understood for the vector
ûǫ = (û2, . . . , ûJ) ∈ G J−1 since the first component is fixed to û1 = 0 for identifiability reasons.
By definition of ûǫ, one has that

∇ûǫ M̃ǫ = 0.

Thus, the Taylor theorem with integral remainder states that,

0 = ǫ−1∇u∗ M̃ǫ +
∫ 1

0
∇2

ūǫ(t)M̃ǫǫ−1(ûǫ − u∗)dt, (4.2)

where for t ∈ [0, 1]

ūǫ(t) = u∗ + t(ûǫ − u∗) ∈ Uǫ = {u ∈ U0, ‖u − u∗‖ ≤ ‖ûǫ − u∗‖}. (4.3)

Then, let us introduce the following matrix norm :
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Definition 4.4 For any matrix A of size q × q with complex entries Ak,ℓ, ‖A‖ denotes the norm

‖A‖ =
q

∑
k,ℓ=1

|Ak,ℓ|.

Under appropriate conditions, it will be shown that ǫ−1∇u∗ M̃ǫ converges to a centered
Gaussian variable N(0, 4Σ/J2) (see Proposition 4.2 for the expression of Σ), and that
supu∈Uǫ

‖∇2
u M̃ǫ − 2Σ/J‖ converges in probability to 0. Then, using Slutsky’s lemma (see e.g.

[42]), it will follow that ǫ−1(ûǫ − u∗) converges to N(0, Σ−1) which is the main result of this
section (see Theorem 4.1).

Obviously, to compute ∇u M̃ǫ and ∇2
u M̃ǫ, it will be necessary to compute the gradient and

the Hessian of the function
{

π̃ : G → GL(V)

u 7→ π(exp(u)),

where π is a finite dimensional representation of G in the vector space V. First remark that the
differential of π at the identity e can be computed as

deπ(u) = lim
t→0

1
t

(π(exp(tu)) − π(e))

for u ∈ G. Therefore, its differential at point h ∈ G is given by

dhπ(u) = lim
t→0

1
t

(π(h · exp(tu)) − π(h))

= π(h) lim
t→0

1
t

(π(exp(tu)) − π(e))

= π(h)deπ(u). (4.4)

The above equation (4.4) shows that differentiating π just amounts to right multiplication by
deπ(u). This fact is of fundamental importance to prove the ǫ−1 consistency of our estimators.
Finally, by applying the chain rule of differentiation and the above results one has that for
u, v ∈ G

duπ̃(v) = π(exp(u))deπ (du exp(v)) . (4.5)

Then, the following results hold (proofs are deferred to the Appendix):

Proposition 4.2 Assume that the conditions of Proposition 4.1 hold. Moreover, assume that for all

j = 2, . . . , J and k = 1, . . . , p

lim
ǫ→0

ǫ ∑
π∈Ĝǫ

d2
π‖deπ

(

du∗
j

exp(xk)
)

‖2
HS = 0, (4.6)

∑
π∈Ĝ

dπ‖π( f ∗)deπ
(

du∗
j

exp(xk)
)

‖2
HS < ∞, (4.7)

where x1, . . . , xp is an arbitrary basis of G. Then, as ǫ → 0

ǫ−1∇u∗ M̃ǫ → N

(

0,
4
J2 Σ

)

,
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where Σ is a positive definite (J − 1)p × (J − 1)p matrix whose entries for 2 ≤ j1, j2 ≤ J and

1 ≤ k1, k2 ≤ p are given by

Σ(j1,k1)×(j1,k2) = ∑
π∈Ĝ

dπ

(

1−1
J

)

ℜ
〈

π( f ∗)deπ
(

du∗
j1

exp(xk1)
)

, π( f ∗)deπ
(

du∗
j1

exp(xk2)
)〉

HS
,

and for j1 6= j2 by

Σ(j1,k1)×(j2,k2) =− ∑
π∈Ĝ

dπ
1
J
ℜ
〈

π( f ∗)deπ
(

du∗
j1

exp(xk1)
)

, π( f ∗)deπ
(

du∗
j2

exp(xk2)
)〉

HS
.

Proposition 4.3 Assume that the conditions of Proposition 4.1 hold. Moreover, assume that for all

1 ≤ k1, k2 ≤ p

lim
ǫ→0

sup
u∈U







∑
π∈Ĝ\Ĝǫ

dπ ‖π( f ∗)‖2
HS

∥

∥

∥
deπ

(

du exp(xk1)
)∥

∥

∥

2

HS







= 0 (4.8)

lim
ǫ→0

sup
u∈U







∑
π∈Ĝ\Ĝǫ

dπ ‖π( f ∗)‖2
HS

∥

∥

∥deπ
(

d2
u exp(xk1 , xk2)

)∥

∥

∥

HS







= 0 (4.9)

lim
ǫ→0

ǫ2 sup
u∈U







∑
π∈Ĝǫ

d2
π

∥

∥

∥
deπ

(

du exp(xk1)
)∥

∥

∥

2

HS







= 0 (4.10)

lim
ǫ→0

ǫ2 sup
u∈U







∑
π∈Ĝǫ

d2
π

∥

∥

∥deπ
(

d2
u exp(xk1 , xk2)

)∥

∥

∥

HS







= 0 (4.11)

where x1, . . . , xp is an arbitrary basis of G. Then, as ǫ → 0

sup
u∈U1

‖∇2
u M̃ǫ −∇2

u M̃‖ → 0 in probability .

Finally, combining the above propositions we arrive at the following result

Theorem 4.1 Under the assumptions of Propositions 4.1, 4.2 and 4.3,

ǫ−1(ûǫ − u∗) → N(0, Σ−1), as ǫ → 0.

Intuitively, the conditions of Propositions 4.2 and 4.3 impose smoothness constraints of the
reference template f ∗ and also give an idea of how choosing the set Ĝǫ with respect to the level
of noise ǫ. The interpretation of these various conditions is easier in the case of Abelian groups,
in particular when G is the multi-dimensional torus, and this will be discussed in the following
sections.

Let us define I(u∗) = Σ. The matrix I−1(u∗) is the asymptotic covariance matrix of the
estimator ûǫ. As it depends on the point u∗ (and thus of h∗), this matrix can be interpreted
as a Riemannian metric on G. This is a classical result in mathematical statistics for random
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variables whose law is indexed by parameters belonging to a finite-dimensional manifold. In
such settings, the Fisher information matrix is a Riemannian metric and lower bounds analogue
to the classical Cramer-Rao bound for parameters in an Euclidean space can be derived (see e.g.
[37] for a detailed review and discussion of this notion). When the exponential chart is centered
at the point h∗ (h̃ = h∗), the covariance matrix can be rewritten as a tensor product of matrices:

Σ = (IJ−1 −
1
J
IJ−1) ⊗ Gramm(∇ f ∗),

where IJ−1 is the identity matrix of RJ−1, IJ−1 is the (J − 1)× (J − 1) matrix whose the elements
are equal to 1, and Gramm(∇ f ∗) is the p × p matrix defined as, for 1 ≤ k1, k2 ≤ p,

Gramm(∇ f ∗)k1,k2 = ∑
π∈Ĝ

dπℜ
〈

π( f ∗)deπ
(

d0 exp(xk1)
)

, π( f ∗)deπ
(

d0 exp(xk2)
)〉

HS
. (4.12)

4.4 The special case of Abelian groups

In the particular case where G is an Abelian group, the conditions of Theorem 4.1 are much
simpler and easier to interpret, which is due to the fact that the mapping du exp reduces to
the identity on G i.e. du exp(v) = v for all u. Moreover, recall that in this case dπ = 1. Let
f̃ ∗ : u ∈ G → f ∗(gh exp(u)) be the function defined at the neighborhood of gh ∈ G. From our
notations, the gradient of f̃ ∗ at point u is the following vector of Rp,

∇u f̃ ∗ =
(

dgh exp(u) f ∗(du exp(xk))
)

1≤k≤p
.

In the Abelian case one has that du exp(xk) = xk, and thus ∇u f̃ ∗ =
(

dgh exp(u) f ∗(xk)
)

1≤k≤p
can

be seen as a function of gh exp(u). By abusing notations, we denote by dgh exp(u) f ∗ that function.
Using the Fourier inverse formula, we get that

f̃ ∗(u) = ∑
π

π( f ∗)π(gh exp(u)).

Then by differentiation, the derivative of the function f̃ ∗ at point u in the direction v ∈ G is,

dgh exp(u) f ∗(v) = ∑
π

π( f ∗)deπ(v)π(gh exp(u)).

Consequently, the Parseval formula and the expression (4.12) of the matrix Gramm (∇ f ∗)
imply that in the case of Abelian group the matrix Gramm (∇ f ∗) is given by

Gramm (∇ f ∗)k1,k2
=
∫

G
dg f ∗(xk1)dg f ∗(xk2)dg.

If we suppose that Ĝǫ is a finite subset of Ĝ, then one has the following result which is an
immediate consequence of Theorem 4.1.
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Proposition 4.4 Let G be an Abelian group. Assume that Assumption 4.1 holds and that f ∗ ∈ L2(G)

is regular and not shift-invariant. Moreover suppose that for k = 1, . . . , p

lim
ǫ→0

ǫ2#{Ĝǫ} = 0 (4.13)

lim
ǫ→0

ǫ ∑
π∈Ĝǫ

|deπ(xk)|2 = 0 (4.14)

lim
ǫ→0

∑
π∈Ĝ\Ĝǫ

|π( f ∗)|2
∣

∣

∣
deπ(xk)

∣

∣

∣

2
= 0, (4.15)

where x1, . . . , xp is an arbitrary basis of G. Then, as ǫ → 0

ǫ−1(ûǫ − u∗) → N(0, Σ−1), as ǫ → 0,

for 2 ≤ j1, j2 ≤ J and 1 ≤ k1, k2 ≤ p are given by

Σ(j1,k1)×(j1,k2) = ∑
π∈Ĝ

(

1 − 1
J

)

|π( f ∗)|2ℜ
(

deπ
(

xk1

)

deπ (xk2)
)

,

Σ(j1,k1)×(j2,k2) = ∑
π∈Ĝ

1
J
|π( f ∗)|2ℜ

(

deπ
(

xk1

)

deπ (xk2)
)

for j1 6= j2,

or,

Σ = (IJ−1 −
1
J
IJ−1) ⊗ Gramm(∇ f ∗),

with Gramm(∇ f ∗)k1 ,k2 = ∑π∈Ĝ |π( f ∗)|2ℜ
(

deπ
(

xk1
)

deπ (xk2)
)

=
∫

G dg f ∗(xk1)dg f ∗(xk2)dg.

Thus, condition (4.15) (or (4.7)) state that the common shape is differentiable and its derivatives
are square integrable on G. Conditions (4.13)-(4.14) (or (4.6)-(4.10)-(4.11)) give some sufficient
assumptions on the choice of Ĝǫ to guarantee the asymptotic normality of the estimators.

Note that the asymptotic covariance matrix Σ−1 does not depend on the point h∗ since the
parameter space for the shifts is a flat subset of Rp in the case of Abelian groups. The matrix
Gramm(∇ f ∗) can be viewed as the scalar product of the partial derivatives g 7→ d f ∗(xk1)

and g 7→ d f ∗(xk2) . Then, the covariance matrix Σ is invertible if, and only if the matrix
Gramm(∇ f ∗) is invertible. This means that the partial derivatives of the common shape have
to be linearly independent in L2(G). Moreover if the partial derivatives of f ∗ are orthogonal,
the covariance matrix may be rewritten as a block diagonal matrix: for a fixed j, the estimators
of the components u∗

j,1, . . . , u∗
j,p of the vector u∗

j ∈ Rp are asymptotically independent.
Then, let us study Proposition 4.4 in the case where G = (R/Z)p which corresponds to the

torus in dimension p. This case corresponds to the case of periodic functions defined on [0, 1]p

for which Ĝ = Zp and G = Rp. Therefore, one retrieves the classical multi-dimensional Fourier
decomposition of a function f ∈ L2([0, 1]p)

f (x) = ∑
ℓ∈Zp

cℓ( f )eℓ(x), for x = (x1, . . . , xp) ∈ [0, 1]d and ℓ = (ℓ1, . . . , ℓp) ∈ Z
d,
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where eℓ(x) = π(x) = e−i2π(∑
p
k=1 ℓkxk

) and cℓ( f ) = π( f ) =
∫

[0,1]d f (x)eℓ(x)dx. Note also that

deπ(xk) = −i2πℓk. The condition that the function f ∗ is not shift invariant means that f ∗ cannot
be rewritten as a function m : (R/Z)p−1 → R, and Zp is the minimal network of periodicity.
This assumption implies that the partial derivatives are linearly independent. Moreover, one
can check that f ∗ is not shift invariant if one of these two conditions holds:

1. there exist ℓ1, . . . , ℓp ∈ Zp such that for all r = 1 . . . p, cℓr
( f ∗) 6= 0, and det

(

{

lk
r

}

1≤r,k≤p

)

=

1,

2. there exist ℓ11, . . . , ℓ1p ∈ Zp and ℓ21, . . . , ℓ2p ∈ Zp such that for all r = 1 . . . p, i = 1, 2,

cℓir
( f ∗) 6= 0, and det

(

{

ℓk
1r

}

1≤r,k≤p

)

and det
(

{

ℓk
2r

}

1≤r,k≤p

)

are relatively prime.

Now, take
Ĝǫ = {(ℓ1, . . . , ℓp) ∈ Z

p, |ℓk| ≤ ℓǫ for all k = 1, . . . , p},

for some positive integer ℓǫ. Then, the three conditions of Proposition 4.4 are satisfied if

ǫ2
ℓ

p
ǫ = o(1), ǫℓ

p+2
ǫ = o(1), and ∑

(ℓ1,...,ℓp)∈Zp

(

|ℓ1|2 + . . . + |ℓp|2
)

|cℓ( f ∗)|2 < ∞.

The last above condition implies that the template function f ∗ should be at least differentiable.
Also note that in this case, the two criterion Mǫ(h) and M̃ǫ(u) coincide for h ∈ G J and
u ∈ ([0, 1]p)J . Since the condition ǫℓ

p+2
ǫ = o(1) implies that ǫ2ℓ

p
ǫ = o(1) if ℓǫ → +∞ as

ǫ → 0, we arrive at the following proposition:

Proposition 4.5 Let G = (R/Z)p and f ∗ ∈ L2([0, 1]p) be a periodic function. Assume that h∗ ∈ G J

or equivalently that u∗ ∈ ([0, 1]p)J . Moreover, assume that f ∗ is regular and not shift-invariant, and

suppose that

ǫℓ
p+2
ǫ = o(1) and ∑

(ℓ1,...,ℓp)∈Zp

(

|ℓ1|2 + . . . + |ℓp|2
)

|cℓ( f ∗)|2 < ∞,

then, as ǫ → 0
ǫ−1(ûǫ − u∗) → N(0, Σ−1), as ǫ → 0,

where the matrix Σ simplifies to

Σ(j1,k1)×(j1,k2) = ∑
ℓ∈Z

(

1 − 1
J

)

|cℓ( f ∗)|2(2π)2
ℓ

k1ℓ
k2 ,

Σ(j1,k1)×(j2,k2) = − ∑
ℓ∈Z

1
J
|cℓ( f ∗)|2(2π)2

ℓ
k1ℓ

k2 for j1 6= j2,

Proposition 4.5 shows that we retrieve the results in [14] and [43] obtained in related
nonparametric regression models for one-dimensional shifted curves (p = 1) with sampled
design points. However, with sampled design points, we have to assume the following
stronger regularity on the common shape in order to estimate the Fourier coefficient (see [43])

∑
|ℓ|≥m

|cl( f ∗)| = o
(

m−p/2
)

.
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4.5 The case of the special orthogonal group SO(3)

Now let us consider the case where G = SO(3) = SO(3, R) (the special orthogonal group) to
illustrate the influence of the geometry of non-commutative groups on the estimation of u∗.
The group SO(3) is the space of 3 × 3 orthogonal matrices with determinant equal to one, and
thus a Lie group of dimension p = 3.

First, let us describe the irreducible representations of this group. Let (e1, e2, e3) be the
canonical basis of R3. We define the rotation matrices ri(α) (i = 1, 2, 3) as the counter-clockwise
rotation by an angle α about the ei axes:

r1(α) =







1 0 0
0 cos(α) − sin(α)

0 sin(α) cos(α)






, r2(α) =







cos(α) 0 sin(α)

0 1 0
− sin(α) 0 cos(α)






,

and

r3(α) =







cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1






.

It is a classical fact that element of SO(3) are parameterized by three Euler angles α, β, γ :
for every g ∈ SO(3) there exist angles α, γ ∈ [0, 2π), β ∈ [0, π], such that g = g(α, β, γ) =

r3(α)r2(β)r3(γ). This parameterization is not everywhere injective: for β = 0, the two
parameters α and γ are only fixed up their sum. Using the Euler angles, the Haar measure
of SO(3) is dg = 1

8π2 sin(β)dαdβdγ, where dβ (resp. α, γ) is the Lebesgue measure on [0, π]

(resp. [0, 2π)).
Now let us define the representations of SO(3). For m ∈ N, Hm denotes the space of

all harmonic homogeneous polynomials on R3. The space Hm is a complex vector space of
dimension dπ = 2m + 1. We may define a representation πm of SO(3) in Hm as the linear
endomorphism of Hm such that for all g ∈ SO(3):

{

πm(g) : Hm → Hm

h(x) 7→ h(g−1x), for x ∈ R3 and h ∈ Hm.

Hence, evaluating the matrix element of πm for g = g(α, β, γ), we find that (see e.g. [10])

πm
k,l(g) = πm

k,l(g(α, β, γ)) = e−ikαPm
k,l(cos(β))e−ilγ, −m ≤ k, l ≤ m,

where the functions Pm
k,l(cos(β)) are generalizations of the associated Legendre functions and

we refer to [10] (Chapter 9, p.295) for their exact expression. The representations πm, m ∈ N,
are all irreducible unitary representation of SO(3).

Then any f ∗ ∈ L2(SO(3)) can be decomposed as (see e.g. [10])

f ∗(g) =
+∞

∑
m=0

(2m + 1)
m

∑
k=−m

m

∑
ℓ=−m

πm
k,l( f ∗)πm

k,l(g), with πm
k,l( f ∗) =

∫

SO(3)
f ∗(g)πm

l,k(g)dg.
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In this case, a possible choice for the set Ĝǫ defined in Theorem 3.1 is

Ĝǫ = {m = −mǫ, . . . , mǫ},

where mǫ is an appropriate cut-off parameter whose choice is given by the condition
limǫ→0 ǫ2 ∑π∈Ĝǫ

d2
π = limǫ→0 ǫ2 ∑|m|≤mǫ

(2m + 1) = 0 which is satisfied as soon as mǫ = o(ǫ) as
ǫ → 0.

Note that SO(3) is a Lie group of dimension 3, and that a vectorial basis of its associate Lie
algebra is:

x1 =







0 0 0
0 0 −1
0 1 0






, x2 =







0 0 1
0 0 0
−1 0 0






, x3 =







0 −1 0
1 0 0
0 0 0






.

Alternatively, if one parametrizes an element of g ∈ SO(3) using the exponential map and the
Lie algebra as

g = g(θ1, θ2, θ3) = exp







0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0






, for (θ1, θ2, θ3) ∈ R

3,

then the matrix elements πm
k,l(g) are given by the following formula

πm
k,l(g(θ1, θ2, θ3)) = (−1)2m+k+l

[

(m − k)!
(m + k)!(m − l)!(m + l)!

]

×(sin(θ/2))k−l

(−θ1 + iθ2

θ

)k−l (

cos(θ/2) − i
θ3

θ
sin(θ/2)

)k+l

×P
(k−l,k+l)
m−k

(

(1 − θ2
3/θ2) cos(θ) + θ2

3/θ2) ,

where θ =
√

θ2
1 + θ2

2 + θ2
3 and P

q,q′
n (·), for (n, q, q′) ∈ Z3, are the Jacobi polynomials.

From Proposition 4.2 it follows that the entry (j1, k1) × (j2, k2) of Σ (the inverse of the

asymptotic covariance matrix of ûǫ) depends on deπ
(

du∗
j1

exp(xk1)
)

and deπ
(

du∗
j2

exp(xk2)
)

.

Hence, Σ(j1,k1)×(j2,k2) depends on the parameter u∗ ∈ G J to estimate only through the differential
of the exponential map at the points u∗

j1
and u∗

j2
and in the directions xk1 and xk2 for j1, j2 =

2, . . . , J and k1, k2 = 1, 2, 3. From equation (4.1) it follows that for

u =







0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0






, with (θ1, θ2, θ3) ∈ R

3,

then

du exp(xℓ) = ∑
k≥0

(−1)k

(k + 1)!
(adu)

k (xℓ) for ℓ = 1, 2, 3
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Note that adu(x1) =







0 −θ3 θ2

θ3 0 0
−θ2 0 0






, adu(x2) =







0 −θ3 0
θ3 0 −θ1

0 θ1 0






, adu(x3) =







0 0 θ2

0 0 −θ1

−θ2 θ1 0






, and that clearly (adu)

k (xℓ) depends on (θ1, θ2, θ3), for k > 1 and ℓ =

1, 2, 3.
Hence, du exp(xℓ) generally depends on the point u. Note that for some special values

of u this may not be the case. For instance suppose that θ2 = θ3 = 0 then adu(x1) = 0, which
implies that du exp(x1) = 0 for any value of θ1, but clearly du exp(x2) and du exp(x3) depend on
θ1. Hence, contrary to the case of Abelian groups (see Proposition 4.4), the matrix Σ (and thus
the asymptotic covariance of ûǫ) depends on the parameter u∗ to be estimated. This example
illustrates the influence of the geometry of non-commutative groups on the expression of the
asymptotic covariance of u∗ through the differential of the exponential map.

4.6 The difference between non-Abelian and Abelian groups

These results on the asymptotic normality of the estimators show that there exists a significant
difference between semiparametric estimation on a linear Euclidean space and semiparametric
estimation on a nonlinear manifold. If the group G is non-commutative, then the asymptotic
covariance matrix of the estimator ûǫ depends on the point u∗ and thus on h∗ (and also on the
point h̃ used to define an appropriate projection of the estimator ĥǫ on a vector space). Hence,
this matrix can be interpreted as a Riemannian metric on G which depends on the point h∗.
This is a classical result in parametric statistics for random variables whose law is indexed by
parameters belonging to a finite-dimensional manifold. In such setting, the Fisher information
matrix is a Riemannian metric and lower bounds analogue to the classical Cramer-Rao bound
for parameters in an Euclidean space can be derived (see e.g. [37]). If G is supposed to be an
Abelian group, then the asymptotic covariance matrix of the estimator is still a Riemannian
metric but its expression does not depend on the point h∗ since the parameter space G for the
shifts is a flat manifold.

4.7 The estimation of the common shape

The estimation of the parameter h∗1 , . . . , h∗J allows us to align the signals. Therefore, it is
desirable to be able to define an estimator of the common shape f ∗. Our estimation method
suggests to use the following estimators of the coefficients π( f ∗), π ∈ Ĝ:

π̂ǫ(Y) =
1
J

J

∑
j=1

π(Yj)π(ĥj,ǫ).

Using the Peter-Weyl Theorem (2.1), one can then take the following estimator of the common
shape,

f̂ǫ(g) = ∑
π∈Ĝǫ

dπTr (π(g)π̂ǫ(Y)) .
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In order to simplify the study of this estimator, we restrict it to the case where G = (R/Z)p, the
multidimensional torus. In this case Ĝ = Zp, and a possible choice for Ĝǫ is to take

Ĝǫ = {ℓ ∈ Z
p, |ℓ|∞ ≤ ℓǫ}

for some frequency cutoff parameter ℓǫ > 0, where |ℓ|∞ = max(|ℓk|, 1 ≤ k ≤ p) for ℓ ∈ Zp. To
study the convergence of the estimator f̂ǫ , let us introduce the following smoothness class

F(s, M) =

{

f : (R/Z)p → R, ∑
ℓ∈Zp

(1 + |ℓ|)2s |cl( f ∗)|2 < M

}

for some s ≥ p/2 and some constant M > 0, where |ℓ|2 = |ℓ1|2 + · · · + |ℓp|2. The parameter
s can be thought as a parameter which controls the smoothness of the functions in the above
ellipsoid. In the case p = 1, it is well known that such ellipsoids can be identified with periodic
Sobolev classes (see e.g. [33]), and the problem of estimating functions lying in such sets has
been widely studied in nonparametric regression (see e.g. [38]).

Proposition 4.6 Assume that the conditions of Proposition 4.5 hold. Moreover, assume that the

common shape f ∗ belongs to F(s, M) for s ≥ p/2 and some constant M > 0. Then , as ǫ → 0

MISE f ∗( f̂ǫ) = E

∫

G

(

f̂ǫ(g) − f ∗(g)
)2

dg = O
(

1
ℓ2s

ǫ

+ ǫ2
ℓ

p
ǫ

)

.

Moreover, if ℓǫ ∼ ǫ−2/(2s+p), we have MISE f ∗( f̂n) = O
(

ǫ4s/(2s+p)
)

.

The above theorem shows that aligning the noisy images Yj using the estimated deformations
ĥj,ǫ yields a consistent estimate of the common shape f ∗. Note that if ℓǫ ∼ ǫ−2/(2s+p), then
one retrieves the optimal rate of convergence in the minimax sense for standard nonparametric
regression problems ([38]). Since h∗1 = e, one could simply denoise the first image to estimate
the common shape f ∗ with the same asymptotic rate of convergence. Nevertheless using the
above estimate by aligning all the images reduces the variance from ǫ2 to ǫ2/J which yields
important improvement in practice. Moreover aligning images is a fundamental task in image
registration that is commonly done to estimate a common shape.

However, this estimator is not adaptive in the sense that the choice of ℓǫ depends on the
unknown smoothness s of f ∗. An interesting extension of this work would be to investigate
data-based choices of ℓǫ to estimate f ∗ in an optimal way, but we leave this problem open for
future work. Also, we have only investigated the case G = (R/Z)p. However, at the price of
additional technicalities, it is also possible to define a notion of Sobolev ellipsoid for functions
defined on other compact groups (see e.g. [24] for an example with G = SO(3)) and then to
obtain analog results.

5 Efficiency of the estimators

In this section, we discuss the optimality of the covariance matrix Σ−1 of the estimators given
in Theorem 4.1 from the point of view of asymptotic efficiency in locally asymptotic normal
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(LAN) semi-parametric models, see [32] for a detailed exposition of this concept. We mainly
discuss the efficiency of the estimators for Abelian groups and more particularly for the special
case of the torus in dimension p. To the best of our knowledge, asymptotic efficiency in LAN
models has been mainly developed for the estimation of parameters belonging to a linear
space (see [32] and references therein). Extending the notion of LAN models and efficiency
for parameters lying in a non-commutative Lie group remains a challenge that is beyond the
scope of this paper. Nevertheless, in what follows, we have tried to keep general notations
(using the exponential map and its derivative) to better highlight how the results could be
generalized to non-commutative Lie groups.

In linear spaces, the concept of efficiency is based on what is commonly referred to as the
convolution theorem (see [32]). The two key hypothesis of this theorem are the local asymptotic
normality (LAN) property of the model and the differentiability of the parameter of interest.
Hereafter, we restate this approach into the framework of Abelian Lie groups.

5.1 The LAN property on compact Abelian Lie groups

In the rest of this section, G is supposed to be Abelian. Let P
(ǫ)
θ denote the distribution of the

model (2.2) for the parameter θ = (h, f ) ∈ A0 ×F , where F is the set of real-valued continuous

function on G. The family
(

P
(ǫ)
θ

)

is locally asymptotically normal (LAN) at point θ indexed by

a linear space T endowed with an inner product < ·, · >T and a norm ‖ · ‖T such that for every

t ∈ T there exists a sequence
(

P
(ǫ)
θǫ(t)

)

of probability measures with θǫ(t) ∈ A0 × F such that

the log-likelihood ratio Λǫ for θ and θǫ(t) admits the following representation:

Λǫ (θǫ(t), θ) = log
dP

(ǫ)
θǫ(t)

dP
(ǫ)
θ

= ∆ǫ(t) − 1
2
‖t‖2

T + o
P

(ǫ)
θ

(1),

where the process ∆ǫ(t) is linear in t and converges in P
(ǫ)
θ -distribution to N

(

0, ‖t(θ)‖2
T
)

, for
some t(θ) ∈ T depending on θ. The tangent space T is used to parameterize the neighborhoods
of the point θ∗ = (h∗, f ∗). In the context of Lie group, the LAN property must be true for every
local map in the neighborhood of h∗. Using Assumption 4.1, a convenient choice in this setting
is

θ∗ǫ (t) =
(

(h̃2 exp(u∗
2 + ǫu2), . . . , h̃J exp(u∗

J + ǫuJ)), f ∗ + ǫ f
)

where t = (u2, . . . , uJ , f ) ∈ T = G J−1 ×F . Thanks to the Girsanov formula (see [20], Appendix
2), the log-likelihood ratio Λǫ is (under Assumption 4.1)

Λǫ (θ∗ǫ (t), θ∗) =
∫

G
f (g)dW1(g) +

1
ǫ

J

∑
j=2

∫

G
( f ∗ + ǫ f )(gh̃−1

j exp(−u∗
j − ǫuj)) − f ∗(gh̃−1

j exp(−u∗
j ))dWj(g)

− 1
2

∫

G
f (g)2dg − 1

2ǫ2 ∑
j=2

J
∫

G

{

( f ∗ + ǫ f )(gh̃−1
j exp(−u∗

j − ǫuj)) − f ∗(gh̃−1
j exp(−u∗

j )
}2

dg.

Note that the Girsanov’s formula in [20]] is not stated over a Lie group. We only apply it in
the case of an Abelian group which can considered as an Euclidean space by some abuse of
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notations. Thus, if the common shape f ∗ is continuously differentiable and using the uniform
continuity of the functions f ∗ and f on the compact group G, the following proposition holds
(the proof is omitted as it is a direct consequence of the above formula for the log-likelihood
ratio):

Proposition 5.1 Assume that G is a compact Abelian Lie group. Let 〈·, ·〉
L2(G) be the standard

inner-product in L2(G). Assume that the function f ∗ is not shift-invariant and differentiable with a

continuous tangent map function d f ∗ such that the matrix,

Gramm(∇ f ∗) =

(

〈

d f ∗(xk1), d f ∗(xk2)
〉

L2(G)

)

1≤k1,k2≤p

,

is invertible. Then the model
(

P
(ǫ)
θ

)

is LAN at point θ∗ = (h∗, f ∗) indexed by the tangent space

T = G J−1 ×F with,

∆ǫ(t) =
∫

G
f (g)dW1(g) +

J

∑
j=2

∫

G
f (gh̃−1

j exp(−u∗
j ))− dgh̃−1

j exp(−u∗
j )

f ∗(uj)dWj(g).

Moreover, the tangent space T = G J−1 ×F is a vector space when endowed with the following inner-

product:

< t, t′ >T =
〈

f , f ′
〉

L2(G)
+

J

∑
j=2

〈

f − dg exp(0) f ∗(uj), f ′ − dg exp(0) f ∗(u′
j)
〉

L2(G)
,

and the closure of T = G J−1 ×L2(G) is a Hilbert space.

Let Tǫ be any estimator of h∗ and let us denote by ûǫ ∈ G J−1 its local coordinates in the Lie
Algebra G via the exponential map. Using the centered process ∆ǫ(t), we can characterize the
class of asymptotically linear estimators in the sense of the following definition:

Definition 5.1 An estimator Tǫ of h∗ is said to be asymptotically linear if and only if there exists t ∈ T
such that

ǫ−1(ûǫ − u∗) = ∆ǫ(t) + o
P

(ǫ)
θ∗

(1),

where ∆ǫ(t) =
(

∆ǫ(t1,2), . . . , ∆ǫ(tp,2), . . . , ∆ǫ(tp,J)
)

is a multi-variate centered process linear in

t = (t1,2, . . . , tp,J) ∈ T p(J−1).

5.2 The differentiability of the estimation parameter

Let us now consider the special case where G = (R/Z)p is the torus in dimension p. Denote
the parameter to estimate relative to the distribution P

(ǫ)
θ by

νǫ

(

P
(ǫ)
θ

)

:= (v2, . . . , vJ) ∈ G J−1,
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where θ =
(

(h̃2 exp(v2), . . . , h̃J exp(vJ)), f
) ∈ A0 ×F . This parameter is differentiable relative

to the tangent space T in the sense that

lim
ǫ→0

ǫ−1
{

νǫ

(

P
(ǫ)
θǫ(t)

)

− νǫ

(

P
(ǫ)
θ

)}

= (u2, . . . , uJ), t ∈ T ,

and thus there exists a continuous linear map ν̇ from T p(J−1) to G p(J−1). According to the Riesz
representation theorem, there exist p(J − 1) vectors (ν̇k,j)1≤k≤p,2≤j≤J of the closure of T such
that:

∀t ∈ T ,
〈

ν̇k,j, t
〉

T = uk
j ,

where t = (u, f ) ∈ T and u = (u1
2, . . . , u

p
2 , . . . u

p
J ) ∈ G J−1.

Then, the tangents vectors ν̇k,j = (u̇k,j, ḟk,j) ∈ G J−1 ×F are such that,

ḟk,j =
1
J

J

∑
j′=2

d f ∗
(

(u̇k,j)j′
)

, (5.1)

and the vectors (u̇k,j)k,j are the solutions of the equation,

(IJ−1 −
1
J
IJ−1)⊗ Gramm(∇ f ∗)(u̇1,2, . . . , u̇p,2, . . . , u̇p,J) = Ip(J−1). (5.2)

Since the process ∆ǫ(t) is linear with t, a consequence of the Proposition 5.3 of [32] allows us to
link the notions of asymptotic linearity and asymptotic efficiency.

Proposition 5.2 Let Tǫ be an asymptotic linear estimator of h∗ with associate centered process

∆ǫ(t) =
(

∆ǫ(t1,2), . . . , ∆ǫ(tp,2), . . . , ∆ǫ(tp,J)
)

.

Tǫ is asymptotically regular and efficient if and only if,

∀j = 2 . . . J, ∀k = 1 . . . p, tp,j = ν̇k,j.

Let ξ j ∈ Rd be the centered random vectors defined as,

ξ j =
∫

G
∇gh̃−1

j exp(−u∗
j )

f ∗dWj(g exp(u)), j = 1, . . . J.

Let Tǫ be an asymptotic linear estimator of h∗ and denote by ûǫ ∈ G J−1 its local coordinates in
the Lie Algebra G via the exponential map. Using Propositions 5.1 and 5.2, equations (5.1) and
(5.2), it follows that the estimator Tǫ is asymptotically efficient if and only if,

ǫ−1(ûǫ − u∗) =

(

IJ−1 −
1
J
IJ−1

)−1

⊗Gramm(∇ f ∗)−1

(

−
J

∑
j=2

ej ⊗ ξ j +
1
J

J

∑
j=1

1J−1 ⊗ ξ j

)

+ o
P

(ǫ)
θ∗

(1),

(5.3)
where 1J−1 = (1, . . . , 1)T ∈ RJ−1. The following proposition (whose proof is deferred to the
Appendix) finally shows that in the case of G = (R/Z)p (the torus in dimension p) then the
estimator is asymptotically efficient.
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Proposition 5.3 Suppose that G = (R/Z)p. Assume that the function f ∗ is not shift-invariant and

differentiable with a continuous tangent map function d f ∗ such that the matrix,

Gramm(∇ f ∗) =

(

〈

d f ∗(xk1), d f ∗(xk2)
〉

L2(G)

)

1≤k1,k2≤p

,

is invertible. Then, the estimator ûǫ is asymptotically efficient.

6 Numerical simulations and some illustrative examples

6.1 A general gradient descent algorithm

To compute the estimator ĥǫ one has to minimize the function Mǫ(h). As this criterion is defined
on a Lie group, a direct numerical optimization is generally not feasible if G is not a linear
space, as in this case one may compute estimates which do not belong to the search space (take
for instance the problem of optimizing a function over the space of positive definite matrices).
Finding minima of functions defined on a Lie group is generally done by reformulating the
problem as an optimization problem on the Lie algebra of G. Such an approach has been for
instance proposed in [34] to formulate a general Newton optimization method over Lie groups.
Here, we propose to find a minima ûǫ of M̃ǫ(u) for u ∈ G J , and then to take ĥǫ = exp(ûǫ).
Since the expression of the gradient of M̃ǫ(u) is available in a closed form, a gradient descent
algorithm with an adaptive step can be easily implemented. More precisely the algorithm is
composed of the following steps:

Initialization : let u0 = 0 ∈ G J , γ0 = 1
‖∇

u0 M̃ǫ‖ , M(0) = M̃ǫ(u0), and set m = 0.

Step 2 : let unew = um − γm∇um M̃ǫ and M(m + 1) = M̃ǫ(unew)

While M(m + 1) > M(m) do

γm = γm/κ, and unew = um − γm∇um M̃ǫ, and M(m + 1) = M̃ǫ(unew)

End while

Then, take um+1 = unew and set m = m + 1.

Step 3 : if M(m) − M(m + 1) ≥ ρ(M(1) − M(m + 1)) then return to Step 2, else stop the
iterations, and take ĥǫ = exp(um+1).

In the above algorithm, ρ > 0 is a small stopping parameter and κ > 1 is a parameter
to control the choice of the adaptive step γm. Note that the choice of a basis for the product
space G J can be arbitrary and is left to the statistician. Moreover, to satisfy the identifiability
constraints the first p components of um are held fixed to zero at each iteration m.
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6.2 Registration of translated 2D images

As an illustrative example, the above described algorithm has been implemented for the
registration of translated 2D images. All simulations have been carried out with Matlab,
and the chosen template f ∗ is the Shepp-Logan phantom image (see [22]) of size N × N with
N = 100 displayed in Figure 6.1. Data can be generated by translating this image and adding
Gaussian noise to each pixel value:

Y j(i1, i2) = f (
i1
N

− h1
j ,

i2
N

− h2
j ) + σzj(i1, i2), 1 ≤ i1, i2 ≤ N, j = 1, . . . , J (6.1)

where i1, i2 denotes a pixel position in the image, zj(i1, i2) ∼i.i.d. N(0, 1), σ is the level of noise,
and h1

j , h2
j ∈ [0, 1] are the unknown translation parameters to estimate. Note that in the above

model, the image f is considered to be periodic function on the square [0, 1]2 so that it is also
defined outside the range of pixels 1, . . . , N × 1, . . . , N. One could argue that the sampled data
model (6.1) does not truly correspond to the white noise model (2.2). However, as previously
explained the white noise model is a useful theoretical tool to study the properties of statistical
procedures in image analysis . Moreover, there exists a correspondence between these two
models in the sense that they are asymptotically equivalent if ǫ = σ

N (see [3]).
We have repeated M = 100 simulations with J = 6 noisy images simulated from the model

(6.1). The various values taken for the translation parameters are the bold numbers given in
Table 2. A typical example of a simulation run is shown in Figure 6.2 (note that the signal-to-
noise ratio is quite low).

Here, G = [0, 1] × [0, 1] and the Lie algebra is G = R2. The criterion M̃ǫ(u) can be easily
implemented via the use of the fast Fourier transform for 2D images:

M̃ǫ(u) =
1
J

J

∑
j=1

∑
|ℓ1|≤ℓǫ

∑
|ℓ2|≤ℓǫ

∣

∣

∣

∣

∣

y
j
ℓ1,ℓ2

ei2π(ℓ1u
j
1+ℓ2u

j
2) − 1

J

J

∑
j′=1

y
j′

ℓ1,ℓ2
ei2π(ℓ1u

j′
1 +ℓ2u

j′
2 )

∣

∣

∣

∣

∣

2

for u = (u1
1, u2

1, . . . , u1
J , u2

J), and where the y
j
ℓ1,ℓ2

’s are the empirical Fourier coefficients of the
image Y j. Moreover, if (x1

1, x2
1, . . . , x1

J , x2
J ) denotes the canonical basis of the product space (R2)J ,

then the components of the gradient of M̃ǫ(u) are given by

∂

∂xk
j

M̃ǫ(u)=−2
J ∑
|ℓ1|≤ℓǫ

∑
|ℓ2|≤ℓǫ

ℜ


(i2πℓk)y
j
ℓ1,ℓ2

ei2π(ℓ1u
j
1+ℓ2u

j
2)(

1
J

J

∑
j′=1

y
j′
ℓ1,ℓ2

ei2π(ℓ1u
j′
1+ℓ2u

j′
2 ))



 .

As discussed in Section 4.4 and according to Proposition 4.5, the smoothing parameter ℓǫ

should be chosen such that ǫℓ4
ǫ = o(1). Because of the equivalence between models (6.1) and

(2.2) given by ǫ = σ
N , this condition becomes

ℓǫ = ℓN = o(N1/4).

Hence, since N = 100, the above condition suggests to take ℓN ≤ 1001/4 ≈ 3.16. However
the choice of ℓǫ is a delicate model selection problem. The condition ℓǫ = o(N1/4) is a purely
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asymptotic result but the choice ℓǫ ≤ 1001/4 is rather arbitrary since for many functions it can
be important to select harmonics above the third one with much care. In, Table 2, we give the
empirical average of the estimated parameters over the M = 100 simulations, for the choice
ℓN = 3, together with their standard deviation. The results are quite satisfactory as averages
are close to the true values and standard deviations are small.

Figure 6.1: Shepp-Logan phantom image of size 100 × 100 used as the template function f ∗

Figure 6.2: A typical simulation run for J = 6 images generated from the model (6.1).

Table 2: Average and standard deviation (in brackets) of the estimators ĥj = (ĥ1
j , ĥ2

j ) over
M = 100 simulations. The bold numbers represent the true values of the parameters (h1

j , h2
j ).

j = 2 j = 3 j = 4 j = 5 j = 6
h1

j 0.07 0.1 0.05 -0.05 -0.08

ĥ1
j 0.0704 (0.0031) 0.0997 (0.0031) 0.0494 (0.0028) -0.0502 (0.0031) -0.0801 (0.0032)

h2
j 0.02 0.08 -0.10 -0.05 0.06

ĥ2
j 0.0201 (0.0031) 0.0803 (0.0031) -0.1002 (0.0030) -0.0493 (0.0029) 0.0604 (0.0032)
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We have also conducted the same simulations but with a slightly different model. Indeed in
real applications, images have a similar shape but are typically not the deformation of exactly

the same image since some portions of an image may not be common to all the other images. In
Figure 6.2 an example of such a data set without noise is displayed. These images have created
by taking only a portion of the previous images generated by translations of the Shepp-Logan
image. Then, M = 100 images are generated by adding Gaussian noise to these J = 6 images.
The values of the “best translation parameters” to align the images in Figure 6.2 are the same
as in the previous simulation, and results are reported in Table 3. Again, the estimations are
very satisfactory and they demonstrate somehow the robustness of this approach with respect
to some deviation from the ideal model (6.1).

Figure 6.3: A more realistic situation: the images look similar, but they are not exactly translated
versions of the same image. Noise is then added to these J = 6 images to create a second data
set.

Table 3: Average and standard deviation (in brackets) of the estimators ĥj = (ĥ1
j , ĥ2

j ) over
M = 100 simulations generated by adding noise to the images shown in Figure 6.3. The bold
numbers represent the true values of the parameters (h1

j , h2
j ).

j = 2 j = 3 j = 4 j = 5 j = 6
h1

j 0.07 0.1 0.05 -0.05 -0.08

ĥ1
j 0.0692 (0.0016) 0.1011 (0.0017) 0.0503 (0.0019) -0.0473 (0.0017) -0.0758 (0.0018)

h2
j 0.02 0.08 -0.10 -0.05 0.06

ĥ2
j 0.0251 (0.0032) 0.0830 (0.0032) -0.0900 (0.0033) -0.0434 (0.0034) 0.0684 (0.0037)
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7 Some extensions of the simple shift model

7.1 The general case

Return now to the general case where the space X is not necessarily equal to G. A possible
extension of the empirical matching criterion (3.3) is to take

Mǫ(h1, . . . , hJ) =
1
J

J

∑
j=1

∥

∥

∥

∥

∥

f̂ j ◦ Lhj
− 1

J

J

∑
j′=1

f̂ j′ ◦ Lhj′

∥

∥

∥

∥

∥

2

L2(X )

(7.1)

where Lh : x ∈ X → hx ∈ X is the action of h ∈ G on X , and f̂1, . . . , f̂ J represent
some estimators of the functions f1, . . . , f J ∈ L2(X ) obtained by smoothing the noisy images
Y1, . . . , YJ . In the case X = G these estimators have been obtained via low-pass filtering in
the Fourier domain, while the deformations of the functions f̂ j by the transformations Lhj

are
easily implemented via a simple multiplication of their Fourier coefficients. In the next section,
we show that for some particular choices of X and G, a similar analysis based on Fourier
transforms can still be investigated. Note that in a future work, we also plan to study the
criterion (7.1) in a more general setting using other smoothing and deformation methods than
those based on Fourier analysis.

7.2 Registration of spherical images

Consider the problem of estimating three-dimensional rotations between images defined on
the three-dimensional unit sphere S2 = {x ∈ R3, ‖x‖ = 1}. In many applications, data can be
organized as spherical images. For instance, spherical images are widely used in robotics since
the sphere is a domain where perspective projection can be mapped, and an important question
is the estimation of the camera displacement from such images (see [30]). Data collected on the
sphere can also be found in other applications such as molecular biology or crystallography
(see [30], [41] and the references therein).

Obviously such data do not correspond exactly to the simple shift model on group (2.2)
as spherical images are defined on X = S2 while the shifts parameters belong the special
orthogonal group G = SO(3). However, a matching criterion similar to the one defined
in equation (3.2) can still be defined by combining the spherical harmonics on S2 with the
irreducible representations of SO(3).

Indeed, let x ∈ S2 be a point on the unit sphere parameterized with spherical coordinates
θ ∈ [0, π] and φ ∈ [0, 2π[. For x = x(θ, φ) let us denote by dx the measure dx = dφ sin(θ)dθ,
where dφ and dθ are the Lebesgue measures on [0, 2π] and [0, π]. Then any f ∈ L2(S2) (the
space of square integrable functions on S2 with respect to dx) can be decomposed as (see e.g.
[10])

f (x) =
+∞

∑
ℓ=0

ℓ

∑
m=−ℓ

cm
ℓ
( f )Ym

ℓ
(x),

with cm
ℓ
( f ) =

∫

S2
f (x)Ym

ℓ
(x)dx =

∫ π

0

∫ 2π

0
f (θ, φ)Ym

ℓ
(θ, φ)dφ sin(θ)dθ, and where the functions
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(Ym
ℓ

, ℓ ∈ N, m = −ℓ, . . . , ℓ) are the usual spherical harmonics which form an orthonormal basis
of (L2(S2), dx), and are given by

Ym
ℓ

(θ, φ) = Γℓ,mPm
ℓ

(cos(θ))eimφ,

where the Pm
ℓ

’s are the associated Legendre functions and Γℓ,m are normalizing constants to
satisfy the orthonormality conditions. For further details on spherical harmonics we refer to
[10].

Now, to each g ∈ G = SO(3), one can associate a linear mapping π(g) which acts on L2(S2)

by π(g) f (x) = f (g−1x). This defines a left regular representation of SO(3) on the vector space
L2(S2) . Moreover, one has that Ĝ = N, and the invariant subspaces are the vector spaces
{Vℓ, ℓ ∈ N} defined as the set of functions spanned by the spherical harmonics at frequency ℓ,
i.e.

Vℓ = Vect{Ym
ℓ

, m = −ℓ, . . . , ℓ}.

Then, using the decomposition of a representation into a direct sum of irreducible
representations, and if we identify the irreducible representations of SO(3) as (2ℓ + 1) × (2ℓ +

1) matrices πℓ (with respect to the above basis for Vℓ) , it follows that the action of a rotation
h ∈ SO(3) on a function f ∈ L2(S2) is given by

f (h−1x) =
+∞

∑
ℓ=0

cℓ( f )Tπℓ(h)Yℓ(x) for all x ∈ S
2, (7.2)

where cℓ( f ) = (cm
ℓ
( f ))m=−ℓ,...,ℓ denotes the vector in C2ℓ+1 of spherical coefficients of f ,

and Yℓ(x) = (Ym
ℓ

(x))m=−ℓ,...,ℓ is the vector in C2ℓ+1 of spherical harmonics at frequency ℓ.
Depending on the chosen parametrization for SO(3) (e.g. by Euler angles), various formulas
are available to express the coefficients of the matrices πℓ and we refer to [10] for further details.

Now, suppose that one has a set of noisy observations of spherical images f j that satisfy the
following shift model: for j = 1, . . . , J and x ∈ S2

dZj(x) = f j(x)dx + ǫdWj(x), (7.3)

where f j(x) = f ∗(h∗j
−1x),

where Wj, j = 1, . . . , J are standard Brownian sheets on the topological space S2 with measure
dx, ǫ is an unknown noise level parameter, f ∗ : S2 → R is an unknown template, and h∗j , j =

1, . . . , J are rotation parameters in G = SO(3) to estimate. For h = (h1, . . . , hJ) ∈ A0, where A0

is the subset of G J defined in equation (2.3), the shift property (7.3) and the orthonormality of
the spherical harmonics imply that the following matching criterion

N(h) =
1
J

J

∑
j=1

∥

∥

∥

∥

∥

f j ◦ Thj
− 1

J

J

∑
j′=1

f j′ ◦ Thj′

∥

∥

∥

∥

∥

2

L2(S2)

, (7.4)

where Thj
: x ∈ S2 → hjx ∈ S2, can be written as

N(h) =
1
J

J

∑
j=1

+∞

∑
ℓ=0

∥

∥

∥

∥

∥

cℓ( f j)
Tπℓ(h−1

j ) − 1
J

J

∑
j′=1

cℓ( f j′)
Tπℓ(h−1

j′ )

∥

∥

∥

∥

∥

2

C2ℓ+1

, (7.5)
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where ‖·‖2
C2ℓ+1 denotes the usual euclidean norm in C2ℓ+1. Then, remark that the spherical

harmonic coefficients of the noisy images Zj are given by (in vector form)

cℓ(Zj) =
∫

S2
Yℓ(x)dZj(x) = cℓ( f j) + ǫcℓ(Wj), j = 1 . . . J,

where cℓ(Wj) =
∫

S2 Yℓ(x)dWj(x) is a complex random vector whose components are
independent and identically distributed Gaussian variables NC(0, 1). Now, let ℓǫ be an
appropriate frequency cut-off parameter to be chosen later, the following empirical criterion
can thus be proposed for registering spherical images:

Nǫ(h1, . . . , hJ) =
1
J

J

∑
j=1

ℓǫ

∑
ℓ=0

∥

∥

∥

∥

∥

cℓ(Zj)π(h−1
j ) − 1

J

J

∑
j′=1

cℓ(Zj′)π(h−1
j′ )

∥

∥

∥

∥

∥

2

C2ℓ+1

, (7.6)

and an M-estimator of the rotation parameters is thus given by

ĥǫ = arg min
h∈A0

Nǫ(h).

The criterion Nǫ is very similar to the criterion Mǫ. Indeed, its formulation is equivalent
to that of Mǫ is one replaces, in the expression (3.3), the matrix π(Yj) by the vector cℓ(Zj), the
norm ‖·‖2

HS by ‖·‖2
C2ℓ+1, and the summation ∑π∈Ĝǫ

by ∑
ℓǫ

ℓ=0. Note that the weighting by the
dimension dπ = (2ℓ + 1) disappears in the formulation of Nǫ due the chosen normalization for
the spherical harmonics. Therefore, the study of the consistency and the asymptotic normality
of ĥǫ can be done by following exactly the arguments developed in Sections 2.2 and 4. For this,
let us introduce the following definitions:

Definition 7.1 A function f ∈ L2(S2) is said to be not shift-invariant if there does not exist a closed

subgroup H of SO(3) (except H = {e} or H = SO(3)) such that f (hx) = f (x) for all x ∈ S2 and

h ∈ H.

Definition 7.2 A function f ∈ L2(S2) is said to be regular if for all ℓ ∈ N such that cℓ( f ) is not

identically null, then the linear mapping A 7→ cℓ( f )T A is injective, for A belonging to the set of

(2ℓ + 1) × (2ℓ + 1) matrices with complex entries.

Then, the following proposition holds (its proof is omitted since it follows from a simple
adaptation of the proof of Theorem 3.1)

Proposition 7.1 Assume that f ∗ ∈ L2(S2) is not shift-invariant and regular. Suppose that

lim
ǫ→0

ǫ2
ℓǫ

∑
ℓ=0

(2ℓ + 1) = 0,

then ĥǫ converges in probability to h∗ = (h∗1 , . . . , h∗J ).
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The asymptotic normality of ĥǫ can also be studied by reformulating the criterion Nǫ(h)

as a function Ñǫ(u) defined on G J , and by taking ĥǫ = exp(ûǫ). The Lie algebra of SO(3) is
the space so(3) of 3 × 3 skew symmetric matrices which is a linear space of dimension p = 3
generated by the basis (see [10])

x1 =







0 0 0
0 0 1
0 −1 0






, x2 =







0 0 −1
0 0 0
1 0 0






, x3 =







0 1 0
−1 0 0
0 0 0






.

Adapting the conditions of Theorem 4.1 to the formulation of the criterion Ñǫ(u), replacing
dπ by

√
2ℓ + 1, π( f ∗) by cℓ( f ∗), and the Hilbert-Schmidt inner product and norm for dπ × dπ

matrices by the euclidean inner product and norm in C2ℓ+1, it is also possible to derive the
asymptotic normality of ûǫ.

Simulations : the numerical implementation of the above method for the registration of
spherical images is more involved that the alignment of 2D images. Indeed, one has to deal
with both the problem of computing the Fourier transform for images defined on a sphere, and
with the computation of the irreducible representation of the group SO(3) from its Lie algebra.
Then, a numerical method to find a minimum of Nǫ(h) could be developed by following the
ideas of the general gradient descent algorithm described previously. Due to the large size of
spherical data, it is essential to develop an efficient and fast numerical scheme. However, we
believe that it is far beyond the scope of this paper to develop such a fast numerical method, so
we prefer to leave this for a future work, but encouraged by the good numerical results shown
in the previous section, we think that this approach could certainly yield satisfactory results for
the registration of! spherical images.

Appendix

Proof of Theorem 3.1: to derive the result, it is enough to prove that M(·) has a unique
minimum at (h1, . . . , hJ) = (h∗1 , . . . , h∗J ), and that Mǫ converges uniformly in probability to
M i.e.

sup
h∈A0

|Mǫ(h) − M(h)| → 0 in probability as ǫ → 0.

Then, following e.g. the proof of Theorem 5.7 in [42], these two conditions ensure that
ĥǫ = (ĥ1,ǫ, . . . , ĥJ,ǫ) converges in probability to h∗ as ǫ → 0 .

Unicity of the minimum of M(·): From the definition of M, M is a positive function such that:
M(h∗1 , . . . , h∗J ) = 0. This means that h∗ = (h∗1 , . . . , h∗J ) is a minimum of M.

Let h be a minimum of M such that: M(h) = 0. We shall prove that h = h∗. Indeed, if
M(h) = 0 then for all π ∈ Ĝ such that π( f ) is not identically null we have that:

∥

∥

∥

∥

∥

π( f ∗)

(

(π(h∗j
−1hj) −

1
J

J

∑
j′=1

π(h∗j′
−1hj′)

)∥

∥

∥

∥

∥

2

HS

= 0, ∀j = 1, . . . J
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i.e.

Im

(

(π(h∗j
−1hj) −

1
J

J

∑
j′=1

π(h∗j′
−1hj′)

)

⊆ Ker(π( f ∗)), ∀j = 1, . . . J.

Using the assumption (A2), and the identifiability constraint h1 = e, this means that, for all
π ∈ Ĝ such that π( f ∗) is not identically null,

π(h∗j
−1hj) = IVπ , ∀j = 1, . . . J,

i.e.
h∗j

−1hj ∈ H = ∩Ker(π, π ∈ Ĝ and π( f ) 6= 0}, ∀j = 1, . . . J.

But from the assumption (A1), the normal subgroup H is {e}. The result follows.
Uniform convergence of Mǫ: Remark that Mǫ(h) is the sum of three terms:

Mǫ(h) = Dǫ(h) + ǫLǫ(h) + ǫ2Qǫ(h), (7.7)

where

Dǫ(h) =
1
J

J

∑
j=1

∑
π∈Ĝǫ

dπ

∥

∥

∥

∥

∥

π( f j)π(hj) −
1
J

J

∑
j′=1

π( f j′)π(hj′ )

∥

∥

∥

∥

∥

2

HS

Lǫ(h) =
2
J

J

∑
j=1

∑
π∈Ĝǫ

dπℜ
〈

π( f j)π(hj)−
1
J

J

∑
j′=1

π( f j′)π(hj′), π(Wj)π(hj)−
1
J

J

∑
j′=1

π(Wj′)π(hj′ )

〉

HS

Qǫ(h) =
1
J

J

∑
j=1

∑
π∈Ĝǫ

dπ

∥

∥

∥

∥

∥

π(Wj)π(hj) −
1
J

J

∑
j′=1

π(Wj′)π(hj′ )

∥

∥

∥

∥

∥

2

HS

,

where ℜ(x) denotes the real part of a complex number x. Let us notice that by applying Cauchy
Schwarz inequality, we get that:

|ǫLǫ(h)| ≤ 2{sup
h∈A0

|Dǫ(h) − M(h)| + sup
h∈A0

M(h)}1/2{sup
h∈A0

ǫ2Qǫ(h)}1/2

Since the function M is continuous on the compact set A0, we have just to consider the uniform
convergence of Dǫ to M and the uniform convergence in probability of ǫ2Qǫ to zero.

First, we study the uniform convergence of Dǫ(h) to M(h). Remark that:

∥

∥π( f j)π(hj)
∥

∥

2
HS

= Tr
(

π(h−1
j )π( f j)

T
π( f j)π(hj)

)

=
∥

∥π( f j)
∥

∥

2
HS

= ‖π( f ∗)‖2
HS , (7.8)

and that:
∥

∥

∥

∥

∥

1
J

J

∑
j=1

π( f j)π(hj)

∥

∥

∥

∥

∥

2

HS

=

∣

∣

∣

∣

∣

1
J2

J

∑
j=1

J

∑
j′=1

〈

π( f j)π(hj), π( f j′)π(hj′)
〉

HS

∣

∣

∣

∣

∣

(7.9)

≤ 1
J2

J

∑
j=1

J

∑
j′=1

∥

∥π( f j)π(hj)
∥

∥

HS

∥

∥π( f j′)π(hj′)
∥

∥

HS
(7.10)

≤ ‖π( f ∗)‖2
HS . (7.11)
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Then for all h ∈ A0, we have that

|M(h) − Dǫ(h)| ≤ 2 ∑
π∈Ĝ\Ĝǫ

dπ ‖π( f ∗)‖2
HS .

Thus Dǫ converges uniformly to M, because f ∗ ∈ L2(G) and limǫ→0 Ĝǫ = G.
We show now that ǫ2Qǫ converges uniformly in probability to 0. Using the equality (7.8),

ǫ2Qǫ may be rewritten as the sum of two terms:

ǫ2Qǫ(h) =
ǫ2

J

J

∑
j=1

∑
π∈Ĝǫ

dπ

∥

∥π(Wj)
∥

∥

2
HS

− ǫ2 ∑
π∈Ĝǫ

dπ

∥

∥

∥

∥

∥

1
J

J

∑
j′=1

π(Wj′)π(hj′ )

∥

∥

∥

∥

∥

2

HS

,

where
∥

∥π(Wj)
∥

∥

2
HS

= ∑
dπ

k=1 ∑
dπ

l=1

∣

∣πk,j(Wj)
∣

∣

2 . Then, the first term of the sum converges
uniformly in probability to 0, because

lim
ǫ→0

E





1
J

J

∑
j=1

∑
π∈Ĝǫ

dπ

∥

∥π(Wj)
∥

∥

2
HS



 = lim
ǫ→0

ǫ2 ∑
π∈Ĝǫ

d2
π = 0.

Similarly to the inequality (7.9), the second term may be uniformly bounded by :

0 ≤ ǫ2 ∑
π∈Ĝǫ

dπ

∥

∥

∥

∥

∥

1
J

J

∑
j′=1

π(Wj′)π(hj′ )

∥

∥

∥

∥

∥

2

HS

≤ ǫ2 ∑
π∈Ĝǫ

dπ
1
J2

J

∑
j,j′=1

∥

∥π(Wj)
∥

∥

HS

∥

∥π(Wj′)
∥

∥

HS
.

Using the fact that,

E

(

∥

∥π(Wj)
∥

∥

HS

∥

∥π(Wj′)
∥

∥

HS

)

≤
{

E

(

∥

∥π(Wj)
∥

∥

2
HS

)

E

(

∥

∥π(Wj′)
∥

∥

2
HS

)}1/2
= dπ .

we deduce that the second term converges uniformly to 0, which completes the proof of
Theorem 3.1. �

Proof of Proposition 4.2: from the decomposition (7.7), M̃ǫ(u) can be written as the sum of
three terms:

ǫ−1M̃ǫ(u) = ǫ−1D̃ǫ(u) + L̃ǫ(u) + ǫQ̃ǫ(u), (7.12)

where D̃ǫ(u) = Dǫ(exp(u)), L̃ǫ(u) = Lǫ(exp(u)) and Q̃ǫ(u) = Qǫ(exp(u)). In what follows,
we study the convergence of the three terms in the right part of equality (7.12).

Convergence of ǫ−1∇u∗ D̃ǫ : one can easily check that u∗ is a minimum of D̃ǫ(u) and thus
∇u∗ D̃ǫ = 0 for any ǫ.

Convergence of ǫ∇u∗ Q̃ǫ : remark that Q̃ǫ can be written as

Q̃ǫ(u) = ∑
π∈Ĝǫ

dπ





1
J

J

∑
j=1

∥

∥π(Wj)π(h̃j)π̃(uj)
∥

∥

2
HS

−
∥

∥

∥

∥

∥

1
J

J

∑
j′=1

π(Wj′)π(h̃j′ )π̃(uj′)

∥

∥

∥

∥

∥

2

HS




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Let 2 ≤ j ≤ J and 1 ≤ k ≤ p. Since
∥

∥π(Wj)π(h̃j)π̃(uj)
∥

∥

2
HS

=
∥

∥π(Wj)
∥

∥

2
HS

is independent of uj,
we obtain that for u ∈ G J

duQ̃ǫ(ej ⊗ xk) = −2
J ∑

π∈Ĝǫ

dπℜ
〈

π(Wj)π(h̃je
uj)deπ(duj

exp(xk)),
1
J

J

∑
j′=1

π(Wj′ )π(h̃j′ e
uj′ )

〉

HS

.

Thus, using Cauchy-Schwartz inequalities, one obtains that

E|duQ̃ǫ(v)| ≤ 2
J ∑

π∈Ĝǫ

dπ

√

E ‖A‖2
HS

√

E ‖B‖2
HS,

where

A = π(Wj)π(h̃je
uj)deπ(duj

exp(xk)) and B =
1
J

J

∑
j′=1

π(Wj′)π(h̃j′ e
uj′ ).

Arguing as in the proof of Theorem 3.1, one can easily prove that E ‖B‖2
HS ≤ dπ . Then, remark

that

E ‖A‖2
HS ≤

∥

∥

∥deπ(duj
exp(v))

∥

∥

∥

2

HS
E
∥

∥π(Wj)π(h̃je
uj)
∥

∥

2
HS

≤ dπ

∥

∥

∥deπ
(

duj
exp(xk)

)∥

∥

∥

2

HS

Therefore, under condition (4.6) it follows that ǫE|∇xk
j

u∗ Q̃ǫ| converges to 0 as ǫ → 0, and we
conclude via Markov inequality.

Convergence of ∇u∗ L̃ǫ : let 2 ≤ j ≤ J and 1 ≤ k ≤ p. Then,

du∗ L̃ǫ(ej ⊗ xk) =
2
J ∑

π∈Ĝǫ

dπℜ
〈

π( f j)π(h∗j )deπ(du∗
j

exp(xk)), π(Wj)π(h∗j )−
1
J

J

∑
j′=1

π(Wj′ )π(h∗j′)

〉

HS

Let us introduce the following quantities

Vπ
j,k = π( f ∗)deπ(du∗

j
exp(xk)) and Zπ

j = π(Wj)π(h∗j ) ∼ NC(0, d−1
π π(h∗j )π(h∗j )

T
).

Hence, using that π( f j) = π( f ∗)π(h∗j
−1),

du∗ L̃ǫ(ej ⊗ xk) =
2
J ∑

π∈Ĝǫ

dπℜ




〈

Vπ
j,k, (1 − 1

J
)Zπ

j

〉

HS

+

〈

Vπ
j,k,−1

J

J

∑
j′=1,j′ 6=j

Zπ
j′

〉

HS





Since Var
(

ℜ
〈

Vπ
j,k, Zπ

j

〉

HS

)

= ‖Vπ
j,k‖2

HS/(2dπ), du∗ L̃ǫ(ej ⊗ xk) is a Gaussian variable with zero

mean, and variance:

Var
(

du∗ L̃ǫ(ej ⊗ xk)
)

= =
4
J2 ∑

π∈Ĝǫ

dπ

(

1 − 1
J

)

‖π( f ∗)deπ
(

du∗
j

exp(xk)
)

‖2
HS (7.13)
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where we have used the fact that the Zπ
j ’s are independent variables for π 6= π′ (except for

π′ = π). Using similar calculations, one obtains that

E

(

du∗ L̃ǫ(ej ⊗ xk1)du∗ L̃ǫ(ej ⊗ xk2)
)

=
4
J2 ∑

π∈Ĝǫ

dπ

(

1 − 1
J

)

ℜ
〈

π( f ∗)deπ
(

du∗
j

exp(xk1)
)

,

π( f ∗)deπ
(

du∗
j

exp(xk2)
)〉

HS
(7.14)

E

(

du∗ L̃ǫ(ej1 ⊗ xk1)du∗ L̃ǫ(ej2 ⊗ xk2)
)

= − 4
J2 ∑

π∈Ĝǫ

dπ
1
J
ℜ
〈

π( f ∗)deπ
(

du∗
j1

exp(xk1)
)

,

π( f ∗)deπ
(

du∗
j2

exp(xk2)
)〉

HS
, (7.15)

for j1 6= j2 and 1 ≤ k1, k2 ≤ p. Finally, for any vector v ∈ G J−1, by using equations (7.13), (7.14)
and (7.15), one has that as ǫ → 0

du∗ L̃ǫ(v) → N(0,
4
J2 vTΣv),

which completes the proof of Proposition 4.2. �

Proof of Proposition 4.3: Let (u1, . . . , uJ) be in U0. Let us denote by (h1, . . . , hJ) ∈ G J the
corresponding element such that hj = h̃j exp(uj), j = 1 . . . J. Let 2 ≤ j1, j2 ≤ J and 1 ≤ k1, k2 ≤
p. Then, from the decomposition (7.7), one has that for any u ∈ U1:

d2
u M̃ǫ = d2

uD̃ǫ + ǫd2
u L̃ǫ + ǫ2d2

uQ̃ǫ, (7.16)

In what follows, we study the uniform convergence in probability over U0 of the three above
terms.

Convergence of d2
uD̃ǫ : from the definition of D̃ǫ(u) one has that for j1 6= j2

d2
uD̃ǫ(ej1⊗xk1, ej2⊗xk2)=

−2
J2 ∑

π∈Ĝǫ

dπℜ
〈

π( f j1 )π(hj1 )deπ(duj1
exp(xk1)), π( f j2)π(hj2 )deπ(duj2

exp(xk2))
〉

HS
.

Hence, using Cauchy-Schwartz inequality and the fact that
∥

∥π( f j1 )
∥

∥

HS
= ‖π( f ∗)‖HS yields

∣

∣

∣
d2

u M̃(ej1 ⊗ xk1 , ej2 ⊗ xk2)− d2
uD̃ǫ(ej1 ⊗ xk1 , ej2 ⊗ xk2)

∣

∣

∣

≤ 2
J2 ∑

π∈Ĝ\Ĝǫ

dπ

∥

∥

∥
π( f j1 )π(hj1 )deπ(duj1

exp(xk1))
∥

∥

∥

HS

∥

∥

∥
π( f j2 )π(hj2 )deπ(duj2

exp(xk2))
∥

∥

∥

HS

≤ 2
J2 ∑

π∈Ĝ\Ĝǫ

dπ ‖π( f ∗)‖2
HS

∥

∥

∥deπ(duj1
exp(xk1))

∥

∥

∥

HS

∥

∥

∥deπ(duj2
exp(xk2))π̃

∥

∥

∥

HS

≤ 2
J2







∑
π∈Ĝ\Ĝǫ

dπ ‖π( f ∗)‖2
HS

∥

∥

∥
deπ

(

duj1
exp(xk1)

)∥

∥

∥

2

HS







1/2




∑
π∈Ĝ\Ĝǫ

dπ ‖π( f ∗)‖2
HS

∥

∥

∥
deπ

(

duj2
exp(xk2)

)∥

∥

∥

2

HS







1/2

.
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Therefore, under Assumption (4.8), one has that d2
uD̃ǫ(ej1 ⊗ xk1 , ej2 ⊗ xk2) converges uniformly

to d2
u M̃ǫ(ej1 ⊗ xk1 , ej2 ⊗ xk2) over U0.

Now, if j1 = j2, one has that

d2
uD̃ǫ(ej1 ⊗ xk1 , ej1 ⊗ xk2)

= ∑
π∈Ĝǫ

dπℜ
〈

2
J

π( f j1)π(hj1)
[

deπ(duj1
exp(xk2))deπ(duj1

exp(xk1)) + deπ(d2
uj1

exp(xk1 , xk2))
]

,

π( f j1)π(hj1)−
1
J

J

∑
j=1

π( f j)π(hj)

〉

HS

+
2(1− 1/J)

J ∑
π∈Ĝǫ

dπℜ
〈

π( f j1)π(hj1)deπ(duj1
exp(xk1)), π( f j1)π(hj1)deπ(duj1

exp(xk2))
〉

HS

By proceeding as previously using Cauchy-Schwartz inequality, Assumption (4.8) and
Assumption (4.9) ensure that d2

uD̃ǫ(ej1 ⊗ xk1 , ej1 ⊗ xk2) converges uniformly to d2
u M̃ǫ(ej1 ⊗

xk1 , ej1 ⊗ xk2) over U0.

Convergence of ǫ2d2
uQ̃ǫ : from the definition of Q̃ǫ(u) one has that for j1 6= j2 :

d2
uQ̃ǫ(ej1⊗xk1, ej2⊗xk2)=− 2

J2 ∑
π∈Ĝǫ

dπℜ
〈

π(Wj1 )π(hj1 )deπ(duj1
exp(xk1)), π(Wj2 )π(hj2 )deπ(duj2

exp(xk2))
〉

HS

Thus, using Cauchy-Schwartz inequality,

E|d2
uQ̃ǫ(ej1 ⊗ xk1 , ej2 ⊗ xk2)| ≤ 2

J2 ∑
π∈Ĝǫ

dπ

√

E ‖A‖2
HS

√

E ‖B‖2
HS,

where

A = π(Wj1 )π(hj1 )deπ(duj1
exp(xk1)) and B = π(Wj2)π(hj2 )deπ(duj2

exp(xk2)).

Now, remark that ‖A‖2
HS ≤

∥

∥π(Wj1 )
∥

∥

2
HS

∥

∥

∥
deπ

(

duj1
exp(xk1)

)∥

∥

∥

2

HS
, which implies that (using

again Cauchy-Schwartz inequality)

E|d2
uQ̃ǫ(ej1⊗xk1, ej2⊗xk2)| ≤ 2

J2 ∑
π∈Ĝǫ

d2
π

∥

∥

∥
deπ

(

duj1
exp(xk1)

)∥

∥

∥

HS

∥

∥

∥
deπ

(

duj2
exp(xk2)

)∥

∥

∥

HS

≤ 2
J2







∑
π∈Ĝǫ

d2
π

∥

∥

∥
deπ

(

duj1
exp(xk1)

)∥

∥

∥

2

HS







1/2




∑
π∈Ĝǫ

d2
π

∥

∥

∥
deπ

(

duj2
exp(xk2)

)∥

∥

∥

2

HS







1/2

and therefore under Assumption (4.10), one has that ǫ2E|d2
uQ̃ǫ(ej1 ⊗xk1, ej2 ⊗xk2)| converges

uniformly to zero over U1, and the uniform convergence in probability of ǫ2d2
uQ̃ǫ(ej1⊗xk1, ej2⊗

xk2) to zero follows by Markov inequality.
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Now for j1 = j2,

d2
uQ̃ǫ(ej1⊗xk1, ej1⊗xk2)=− 2

J2 ∑
π∈Ĝǫ

dπℜ
〈

π(Wj1)π(hj1)deπ(duj1
exp(xk1)), π(Wj1)π(hj1)deπ(duj1

exp(xk2))
〉

HS

− 2
J2 ∑

π∈Ĝǫ

dπℜ
〈

π(Wj1)π(hj1)
[

deπ(duj1
exp(xk2))deπ(duj1

exp(xk1)) + deπ(d2
uj1

exp(xk1,xk2))
]

,
J

∑
j=1

π(Wj)π(hj)

〉

HS

,

By proceeding as previously using Cauchy-Schwartz inequality and Markov inequality,
Assumption (4.10) and Assumption (4.11) ensure that ǫ2d2

u M̃ǫ(ej1 ⊗ xk1 , ej1 ⊗ xk2) converges
uniformly in probability to zero over U0.

Convergence of ǫd2
u L̃ǫ : from the definition of L̃ǫ(u) one has that for j1 6= j2 :

d2
u L̃ǫ(ej1⊗xk1, ej2⊗xk2)=

−2
J2 ∑

π∈Ĝǫ

dπℜ
{〈

π( f j1 )π(hj1 )deπ(duj1
exp(xk1)), π(Wj2 )π(hj2 )deπ(duj2

exp(xk2))
〉

HS

+
〈

π( f j2 )π(hj2 )deπ(duj2
exp(xk2)), π(Wj1 )π(hj1 )deπ(duj1

exp(xk1))
〉

HS

}

Then, remarking that by Cauchy-Schwartz inequality

E

∣

∣

∣d2
u L̃ǫ(ej1⊗xk1, ej2⊗xk2)

∣

∣

∣

≤ 2
J2







∑
π∈Ĝǫ

dπ

∥

∥

∥π( f j1)π(hj1)deπ(duj1
exp(xk1))

∥

∥

∥

2

HS







1/2




∑
π∈Ĝǫ

dπE

∥

∥

∥π(Wj2)π(hj2)deπ(duj2
exp(xk2))

∥

∥

∥

2

HS







1/2

+
2
J2







∑
π∈Ĝǫ

dπ

∥

∥

∥
π( f j2)π(hj2)deπ(duj2

exp(xk2))
∥

∥

∥

2

HS







1/2




∑
π∈Ĝǫ

dπE

∥

∥

∥
π(Wj1)π(hj1)deπ(duj1

exp(xk1))
∥

∥

∥

2

HS







1/2

,

and arguing as above for the convergence of ∇2
uQ̃ǫ, it follows from our assumptions that

ǫ|d2
u L̃ǫ(ej1⊗xk1, ej2⊗xk2)| converges uniformly to zero in probability.
Using similar arguments and our assumptions, one can also prove the uniform convergence

in probability to zero of ǫ|d2
u L̃ǫ(ej1⊗xk1, ej1⊗xk2)|, which completes the proof of Proposition 4.3.

�

Proof of Theorem 4.1: Recall that,

Uǫ = {u ∈ U0, ‖u − u∗‖ ≤ ‖ûǫ − u∗‖}.

Let γ > 0, and remark that

P

(

sup
u∈Uǫ

‖∇2
u M̃ǫ −

2
J

Σ‖ > 2γ

)

≤ P

(

sup
u∈Uǫ

‖∇2
u M̃ǫ −∇2

u M̃‖ > γ

)

+ P

(

sup
u∈Uǫ

‖∇2
u M̃ −∇2

u∗ M̃‖ > γ

)

,

where ∇2
u∗ M̃ = 2

J Σ. From Proposition 4.3, the first term in the above equation converges to
zero as ǫ → 0. For the second term, one can remark that u 7→ ∇2

u M̃ is a uniformly continuous
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function the compact set U0, therefore there exists δ > 0 such that (by inclusion of events)

P

(

sup
u∈Uǫ

‖∇2
u M̃ −∇2

u∗ M̃‖ > γ

)

≤ P (‖ûǫ − u∗‖ > δ) .

By Proposition 4.1 it follows that the right term in the above equation converges to zero
which finally proves that supu∈Uǫ

‖∇2
u M̃ǫ − 2

J Σ‖ converges in probability to 0. Using a Taylor
expansion of ∇u M̃ǫ with an integral remainder, we get that

[

2
J

Σ +
∫ 1

0

(

∇2
ūǫ(t)M̃ǫ −

2
J

Σ

)]

ǫ−1(ûǫ − u∗) = −ǫ−1∇u∗ M̃ǫ,

where ūǫ(t) = u∗ + t(ûǫ − u∗) ∈ Uǫ. From Proposition 4.2, one has that ǫ−1∇u∗ M̃ǫ converges
to the Gaussian variable N(0, 4

J2 Σ). Since supu∈Uǫ
‖∇2

u M̃ǫ − 2
J Σ‖ converges in probability to 0,

the proof of Theorem 4.1 is completed. �

Proof of Proposition 4.6: first recall that G = (R/Z)p and Ĝ = Zp. Let ℓ ∈ Zd and for j = 1 . . . J,
let us denote by cℓ(Wj) the Gaussian variables defined as,

cℓ(Wj) =
∫

G
eℓ(x)dWj(x).

Then, we may write for g ∈ G,

f ∗(g)− f̂ǫ(g) = ∑
|ℓ|∞>ℓǫ

cℓ( f ∗)eℓ(g) + ∑
1≤|ℓ|∞≤ℓǫ

cℓ( f ∗)

{

1 − 1
J

J

∑
j=1

eℓ(ĥj,ǫ − h∗j )

}

eℓ(g) − ǫSǫ(g),

(7.17)
where

Sǫ(g) = ∑
1≤|l|∞≤ℓǫ

{

1
J

J

∑
j=1

cℓ(Wj)eℓ(ĥj,ǫ)

}

eℓ(g).

From Proposition 4.5, ǫ(ĥǫ − h∗) converges weakly in distribution. Then, the delta method (see
e.g. [42]) implies that

E

∣

∣

∣

∣

∣

1−1
J

J

∑
j=1

eℓ(ĥj,ǫ−h∗j )

∣

∣

∣

∣

∣

2

=(|ℓ|2)O(ǫ2). (7.18)

Furthermore, the stochastic term Sǫ is such that

∫

G
E(|Sǫ(g)|2)dg ≤ 1

J ∑
1≤|ℓ|∞≤ℓǫ

J

∑
j=1

E(|cℓ(Wj)|2) = O(ℓ
p
ǫ ). (7.19)

Then, inserting (7.18) and (7.19) into (7.17) yields

E

∫

G
| f ∗(g)− f̂ǫ(g)|2dg = ∑

|ℓ|∞>ℓǫ

|cℓ( f ∗)|2 +O(ǫ2 + ℓ
p
ǫ ǫ2).
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and using our assumptions on the smoothness of f completes the proof of Proposition 4.6. �

Proof of Proposition 5.3: from the proof of Proposition 4.2, the gradient of M̃ǫ at u∗ is a squared
integrable random variable and may be rewritten as,

ǫ−1∇u∗ M̃ǫ = ∇u∗ L̃ǫ + o
P

(ǫ)
θ

,

where, for j = 2 . . . J and k = 1 . . . , p,

J

2
du∗ L̃ǫ(ej ⊗ xk) =ℜ

{

∑
π∈Ĝ

π( f ∗)deπ(xk)π(h̃−1
j exp(−u∗

j ))π(Wj)

}

+ o
P

(ǫ)
θ∗

.

Furthermore using the Fourier inversion formula (2.1), we have that for j = 2, . . . , J and
k = 1, . . . , p,

∫

G
d−u∗

j
f̃ (xk)dWj(g) =

∫

G
dgh̃−1

j exp(−u∗
j )

f (xk)dWj(g)

= ∑
π∈Ĝ

π( f ∗)deπ(xk)π(h̃−1
j exp(−u∗

j ))
∫

G
π(g)dWj(g)

= ∑
π∈Ĝ

π( f ∗)deπ(xk)π(h̃−1
j exp(−u∗

j ))π(Wj).

Consequently, we may rewrite ǫ−1∇u∗ M̃ǫ as,

ǫ−1∇u∗ M̃ǫ =
2
J

{

J

∑
j=2

ej ⊗ ξ j −
1
J

J

∑
j=1

1J−1 ⊗ ξ j

}

+ o
P

(ǫ)
θ∗

(1).

Then, using a Taylor expansion, we have established in the proof of Theorem 4.1 that:

ǫ−1(ûǫ − u∗) = − J

2

(

IJ−1 −
1
J
IJ−1

)−1

⊗ Gramm(∇ f ∗)−1ǫ−1∇u∗ M̃ǫ + o
P

(ǫ)
θ∗

(1),

and thus the result of Proposition 5.3 follows from equation (5.3) and the arguments given in
Section 5. �
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